

Gamme de pompes à chaleur IZEA AIR/EAU, l'innovation engagée dans votre environnement

Pompes à chaleur monobloc R290

DE 15 À 50kW, LA GAMME IZEA RELÈVE TOUS LES DÉFIS.

PERFORMANCES

- PAC adaptée aux installations de chauffage existantes grâce à la haute température (jusqu'à 75 °C).
- COP machine jusqu'à 4,94⁽¹⁾, SCOP jusqu'à 4,85⁽²⁾.
- Solution bas carbone, valorisée dans la RE2020 seuil 2025, DPE et decret tertiaire.
- Technologie INVERTER permettant une meilleure modulation de puissance et de faibles pertes de puissance à températures froides.

FACILITÉ D'INSTALLATION

- PAC monobloc sans liaisons frigorifiques.
- Grandes longueurs de tuyauterie possibles entre PAC et local technique.
- Communication Modbus natif et compatible décret BACS et décret tertiaire.
- Conception spécifique pour la sécurité propane.

UNE GAMME RÉPONDANT À TOUS LES MARCHÉS

NEUF

- Performances répondant aux exigences de la RE2020 seuil 2025.
- Solutions bas carbone (GWP propane = 3).

RÉNOVATION

- Performances permettant de gagner jusqu'à 3 étiquettes DPE.
- Solution bas carbone. Couplée avec des travaux d'isolation du bâti, IZEA est idéale pour atteindre les seuils BBC Rénovation.

TERTIAIRE

- Performances satisfaisant les exigences du décret tertiaire.
- Baisse des consommations énergétiques du bâtiment.
- Compatible GTB.

UNE OFFRE GLOBALE COMPLÈTE

LCT P MAX

Ballons primaires pour IZEA

- Capacité : de 500 à 1500 L
- Cuve acier

BOUTEILLES LCT P MAX

Bouteilles de 100 & 200L pour IZEA sur pieds avec 4 piquages hydrauliques de chaque côté

RÉGULATION NAVISTEM T3100

Pilotage intelligent

Conseils de l'expert

Comment choisir entre une solution 100% thermodynamique ou hybride?

NEUF OU RÉNOVATION?

Cette question détermine la flexibilité de votre choix. En neuf, anticiper est possible, tandis qu'en rénovation, l'hybridation peut être la clé de l'adaptation intelligente.

TYPE DE BÂTIMENT?

La nature de votre bâtiment impacte directement les besoins attendus. Un choix bien adapté garantit une efficacité optimale de la pompe à chaleur.

ÉNERGIE DE DÉPART?

Comprendre votre source d'énergie principale guide le choix entre une solution électrique (100% thermodynamique) ou gaz (hybridation).

PLACE DISPONIBLE?

En extérieur : peut-on installer des pompes à chaleur ?
En intérieur : présence d'un local technique pour les ballons primaires PAC (plus grand que pour une solution gaz) ?
La disponibilité d'espace influence le type d'installation possible. Un espace limité peut rendre l'hybridation plus avantageuse, tandis que le 100% thermodynamique nécessite plus de place.

ACOUSTIQUE?

Les exigences acoustiques déterminent le type d'installation à privilégier, surtout en milieu urbain où le bruit est susceptible d'être une préoccupation majeure.

ABONNEMENT ÉLECTRIQUE ?

L'alimentation électrique disponible influence le choix entre les deux solutions. L'hybridation gaz peut alléger l'abonnement nécessaire.

USAGE?

Comprendre si votre besoin est principalement pour l'ECS, le chauffage, ou les deux, guide vers la solution qui répond le mieux à ces exigences spécifiques.

% DÉCARBONÉ ET CONTRAINTES RÉGLEMENTAIRES?

Les normes environnementales et les réglementations peuvent imposer des seuils de décarbonation. Connaître ces contraintes est essentiel pour rester en conformité.

BUDGET

Enfin, le budget disponible est un facteur déterminant. Comprendre les coûts à court et à long terme vous aide à choisir une solution qui allie performance et rentabilité.

Quels sont les avantages de l'hybridation?

UN CONFORT ET DES PERFORMANCES GARANTIES

- Confort garantie avec un secours en cas d'intervention sur la PAC.
- Maximise l'usage de la PAC sur la mi-saison; limite le nombre de démarrage (durée de vie du compresseur).
- Compatible RE2020 avec un dimensionnement à partir de 15% à la température de base.
- DPE : amélioration des étiquettes énergétiques.

UNE SOLUTION IDÉALE EN RÉNOVATION

- Permet de conserver la chaudière existante qui servira d'appoint.
- Très peu de modifications hydrauliques pour intégrer la PAC au niveau de l'installation.
- Eligible aux aides CEE.

| FACILITÉ D'INTÉGRATION VS SOLUTION 100% PAC

- PAC de plus faible puissance = intégration facilitée :
 - Encombrement réduit,
 - Niveau sonore plus faible,
 - Moins de puissance électrique absorbée.

Exemples d'application

Chauffage

GÉNÉRALITÉS PRINCIPE DE FONCTIONNEMENT

CHAUFFAGE

- Le système se compose d'une ou plusieurs pompes à chaleur monobloc Izea associée(s) à un volume de stockage primaire.
- L'appoint électrique permet d'apporter le complément calorifique par grand froid.

IZEA chauffage à appoint électrique

Double service

GÉNÉRALITÉS PRINCIPE DE FONCTIONNEMENT

CHAUFFAGE DOUBLE SERVICE

- Le système se compose d'une ou plusieurs pompes à chaleur monobloc Izea associée(s) à un volume de stockage primaire et un volume de stockage ECS.
- L'appoint électrique permet d'apporter le complément calorifique par grand froid.

IZEA double service à appoint électrique

Chauffage hybride

GÉNÉRALITÉS PRINCIPE DE FONCTIONNEMENT

CHAUFFAGE HYBRIDE APPOINT GAZ AVEC CADENSO

Le système se compose d'une ou plusieurs pompes à chaleur monobloc IZEA, associée(s) à un volume de stockage primaire spécifique.

- L'appoint gaz permet d'apporter le complément calorifique par grand froid et limiter le nombre de PAC.
- La régulation permet de gérer indépendamment jusqu'à 3 circuits de chauffage par pompe à chaleur.
- La chaudière est dimensionnée à 100% du besoin pour renforcer la sécurité d'approvisionnement.

CHAUFFAGE HYBRIDE ET ECS AVEC HEATMASTER

- Chauffage hybride appoint gaz.
- Eau chaude sanitaire à condensation totale.
- 1 générateur monobloc pour 2 usages.
- Gestion du bouclage.

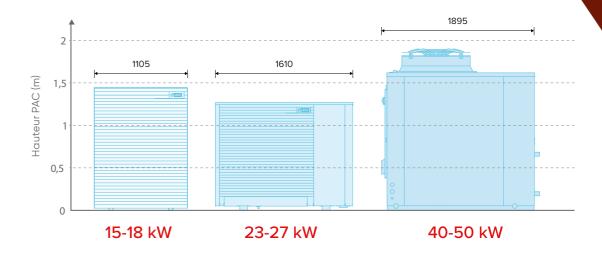
D'autres applications disponibles, contactez-nous!

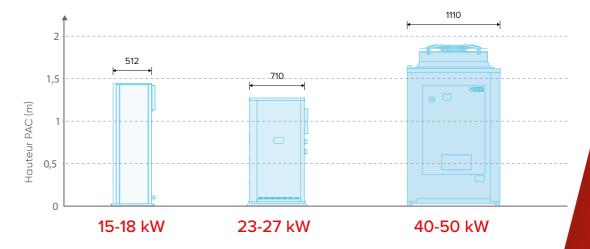
Hybride chauffag

Hybride chauffage + production ECS

Caractéristiques techniques

TYPE	UNITÉ	15 KW	18 KW	23 KW	27 KW	40 KW	50 KW
CARACTERISTIQUES ET PERFORMANCE							
Efficacité énergétique saisonnière ηs (ETAS)	%	191/149	188/146	186/147	175/140	161/131	165/132
SCOP (35 °C / 55 °C)	-	4,85/3,79	4,76/3,73	4,72/3,74	4,46/3,56	4,1/3,36	4,2/3,36
PUISSANCE CALORIFIQUE NOMINALE							
+7°C / +35°C ⁽¹⁾	kW	16,33	18,72	22,8	27	40	50,1
+7°C / +45°C	kW	16,25	18,48	23,00	27,51	40,22	50,52
+7°C / +55°C ⁽¹⁾	kW	15,23	17,38	21,6	26,3	38,1	47,9
-7°C / +55°C	kW	12,22	12,14	17,8	20,7	32,8	39,1
+7°C / +65°C	kW	14,46	16,46	21,2	25,8	38,5	45,9
PUISSANCE ABSORBÉE							
+7°C / +35°C ⁽¹⁾	kW	3,3	4,05	4,78	6,21	9,76	11,9
+7°C / +45°C	kW	3,91	4,69	5,79	7,48	11,59	14,21
+7°C / +55°C ⁽¹⁾	kW	4,52	5,32	6,79	8,74	13,42	16,52
-7°C / +55°C	kW	5,49	5,61	8,94	10,9	18,37	21,2
+7°C / +65°C	kW	5,25	6,16	7,97	10,3	16,31	18,89
COEFFICIENT DE PERFORMANCE (COP)							
+7°C / +35°C (1)	-	4,94	4,62	4,77	4,35	4,1	4,21
+7°C / +45°C	-	4,16	3,95	3,98	3,68	3,47	3,56
+7°C / +55°C ⁽¹⁾	-	3,37	3,27	3,18	3,01	2,84	2,9
-7°C / +55°C	-	2,22	2,16	1,99	1,9	1,8	1,86
+7°C / +65°C	-	2,76	2,68	2,66	2,5	2,36	2,43
CIRCUIT HYDRAULIQUE							
Hauteur utile nominale d'eau au Départ PAC	mCE	6,82	6,1	14,9	14,5	15,6	14,7
Pression maximale côté eau (soupape de sécurité)	bar	3	3	6	6	6	6
Distance maxi entre le générateur et le local technique, canalisations 1''1/2 (2)	m	300	250	270	180	230	190
CARACTÉRISTIQUES UNITÉ EXTÉRIEURE							
Dimensions (hxlxp)	mm	1442 x 1105 x 512		1270 x 1610 x 710		1920 x 1895 x 1110	
Poids en service	kg	174	174	254	264	542	557
Charge de réfrigérant	kg	1,27	1,27	1,7	2,1	3,15	3,5
LIMITES DE FONCTIONNEMENT							
Température extérieure mini / maxi - Chauffage	°C	-20 / +45					
Température d'eau départ PAC mini / maxi - Chauffage	°C	+25 / +75					
PUISSANCE ÉLECTRIQUE							
Alimentation	-	400V / 3Ph+PE / 50Hz					
Puissance maxi absorbée	kW	7,9	8,3	11	13	23	27
Courant maximal absorbé	Α	15,8	16,5	19	21	37	44
CARACTÉRISTIQUES ACOUSTIQUES							
Puissance sonore selon norme EN12102	dB(A)	62	62	64	64	74	75
Pression sonore à 1m ⁽³⁾	dB(A)	54	54	56	56	66	67
CLASSE D'EFFICACITE ENERGETIQUE(4)							
Classe ErP à 35°C	-	<u>Д</u> +++	Д+++	A+++	<u>A+++</u>	<u>Д</u> ++	A++
Classe ErP à 55°C	_	A++	A++	A++	<u>A++</u>	A++	A++


⁽¹⁾ Données certifiées HPKeymark. (2) Régime nominal : 7/35 °C, pertes de charge singulières non considérées. Valeurs indicatives ne dispensant pas d'un dimensionnement des canalisations. (3) Directivité 2. (4) échelle : de A+++ à D



Taille des châssis

VUE DE FACE

VUE DE CÔTÉ

SUPPORTS CHÂSSIS PAC EN TOITURE

- Les supports toitures permettent l'installation des pompes à chaleurs IZEA en toiture tout en respectant le critère de rehausse réglementaire du DTU65-16.
- La réglementation impose en effet une surélévation de 40 cm pour une installation en toiture de nos PAC, quel que soit le châssis.

ACV vous accompagne

AVANT LE CHANTIER

UN ACCOMPAGNEMENT RÉGLEMENTAIRE

RE2020, Décret Tertiaire, BACS, CEE, DPE...

AVANT-VENTE

- Besoins en matière d'eau chaude sanitaire et de chauffage.
- Solution technique la plus appropriée.
- Sélection du produit ACV le plus adapté.
- Fourniture de schémas de principe pour raccordement hydraulique et électrique.

LOGICIEL D'AIDE AU DIMENSIONNEMENT

FORMATION

PENDANT LE CHANTIER

NOS MISES EN SERVICE

- Pré-visite sur site.
- Assistance à l'installation.
- Mise en service.

APRÈS LE CHANTIER

L'ACCOMPAGNEMENT APRÈS-VENTE PERMANENT

- Hotline dédiée lors de mise en service, de diagnostic ou de maintenance et dépannage.
- **■** Espace SAV.

UN OUTIL DE DIMENSIONNEMENT POUR VOS ÉTUDES EN IZEA

ACV FRANCE

122, Rue Pasteur ZAC du bois Chevrier 69780 Toussieu