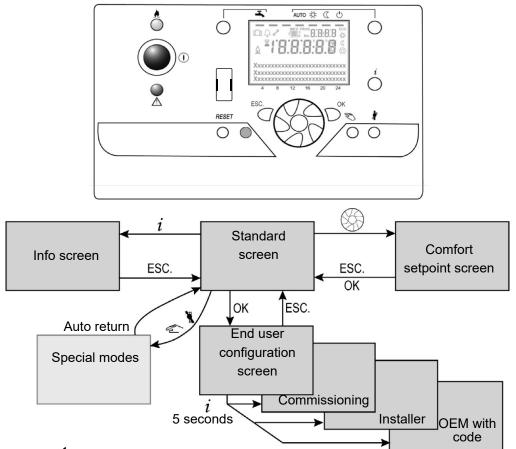


NAVISTEM B3100

BOILER CONTROLLER

INSTALLATION, USE & MAINTENANCE INSTRUCTIONS


For professional. To be retained by user for future reference

SIMPLIFIED USE GUIDE

This section gives a list of parameters to be programmed for a basic boiler installation.

Navigation between the various screens

Main parameters

All the parameters below are accessible from the "End user" level.

Date and time					
1 2 3	Hour minutes Day month Years	See paragraph 6.1, page 32 See paragraph 6.1, page 32 See paragraph 6.1, page 32			
Time schedule program f	or heating circuits 1, 2 and 3	3			
5xx	Adjustment of energy schedules	saving time See paragraph 7.1.2, page 36			
Heating circuits 1, 2 and	3				
710 - 1010 - 1310 712 - 1012 - 1312 720 - 1020 - 1320	I	See paragraph 7.1.4, page 38 See paragraph 7.1.4, page 38 See paragraph 7.1.5, page 38			
Domestic hot water					
1610	Comfort setpoint	See paragraph 8.1.1, page 51			
Error					
Diagnostic Aid		See page 4			

DIAGNOSTIC AID

Code		Fault			
B3000	extended	non blocking fault	blocking fault	Description	1⁵t diagnostic
10	610			Exterior sensor fault, no signal.	Check the wiring on input B9.
20	All			Boiler 1 output fault, no signal.	Check the wiring on input B2.
26	612			Common temperature sensor fault (flow output).	Check the flow common output temperature sensor, declared as sensor B10.
28	All			Fumes sensor short circuited	Check the fumes temperature sensor on BX1.
30	614			Circuit 1 output temperature sensor fault.	Check the temperature sensor of circuits 1 and 2 (usually BX21 on the
32	616			Circuit 2 output temperature sensor fault.	AVS75).
40	All			Boiler 1 feedback sensor fault, no signal or short circuited.	Check the wiring on input B7.
46	53			Flow feedback temperature sensor fault.	Check the flow common feedback temperature sensor, declared as sensor B70.
50	All			DHW sensor 1 fault.	Check sensor B3.
60	59			Ambient sensor 1 fault.	Check the connection of the hey
65	60			Ambient sensor 2 fault.	Check the connection of the box supporting the ambient sensor.
68	61			Ambient sensor 3 fault.	
81				Short circuit on the LPB bus, or no LPB bus power supply.	Check that the two bus wires are not short circuited of that the DB and MB terminals are not inverted on one of the boilers.
82				Identical addresses on the LPB bus.	Check the LPB addresses of the regulators.
91				Problem with the EEPROM.	Contact After Sales.
98	0			Extension module 1 error.	Check the ribbon cable of the bus
99	0			Extension module 2 error.	connected to the AVS75 at address 1 or 2.
	412			Safety thermostat activated: thermostat wired to input STB activated due to excessively high boiler temperature.	
	431			The number of 110/420 faults (return temperature too high compared with the outlet temperature) in 24 hours is too high.	Check the wiring of the sensors and their positions (possible inversion of the two sensors).
110	432			Boiler temperature too high: the value read by the boiler outlet sensor wired to input B2 is too high.	
	436			Return temperature too high: the temperature read on return sensor B7 is too high.	
	437			The number of 110/426 faults (rise in temperature too rapid) in 24 hours is too high.	

Code Fault		ult				
B3000	extended	non blocking fault	blocking fault	Description	1 st diagnostic	
111				Outlet and return temperatures too high, close to the max. thermostat cut- out temperature.		
119	563			Boiler pressure switch fault The pressure switch is open. The fault is the same if it is wired to input H1 or H3.		
128	All			Flame failure during operation.		
130				Fumes outlet temperature (fumes temperature too high)	Check the signal on input BX1.	
	404			Fault short circuited: Air pressure switch fault. No pressure detection.		
132	409 or 410			Fault short circuited: Gas pressure fault.	Check the gas supply pressure.	
	411			Fault 132/409 or 132/410 consecutive.	This fault is automatically cleared after 2 hours or immediately by a power cut.	
133	All			Safety time delay expired. No detection of the flame on ignition.		
146				Sensor or parameter configuration error.		
151	All			LMS internal switch fault.	Invert the neutral and the phase of the power supply of the LMS platform. Invert the connector of the ignition transformer. Check the wiring of the gas valve. Otherwise, contact After Sales.	
153	622			Unit manually locked because the clear faults button was pressed and held for too long.		
160	380			Fan threshold error. Pre- and post- drain speeds higher than the maximum threshold.		
162	398			Air pressure switch error. The pressure switch did not detect any pressure during pre-ventilation.		
164	562			Flow rate error of the heating body irrigation pump.	Check that the pump is properly connected and is not operating without any water. Check input H1.	
166	396			Air pressure switch fault. The air pressure switch detects pressure when the boiler is off.		
171	800			External alarm wired to input H1.	Check whether H1 is configured as external alarm.	
	805			External alarm wired to input H4.	Check whether H4 is configured as external alarm.	
172	806			External alarm wired to input H5.	Check whether H5 is configured as external alarm.	
193	846			Startup is inhibited on an Hx input.	Check the parameters of the Hx inputs.	

Code Fault					
B3000	extended	non blocking fault	Description	1⁵ diagnostic	
260	2		Circuit 3 output temperature sensor fault.	Check the temperature sensor of circuit 3 (usually BX21 on the AVS75).	
322	566		Water pressure too high. This fault corresponds to a measurement wired on input H3.		
323	566		Water pressure too low or no signal. This fault corresponds to a measurement wired on input H3.		
324	0		Two Bx inputs declared with the same function.	Check the declarations of the Bx inputs.	
327	0		Two AVS75 modules declared with the same function.	Check the declarations of the AVS75.	
331	0		Input Bx2 without any function.		
332	0		Input Bx3 without any function.	Check that the status of the Bx input is	
335	0		Input Bx21 without any function.	not 1, while no function is assigned to it.	
336	0		 Input Bx22 without any function.		
352			A flow outlet sensor is declared, while the LMS is not the flow master. The alarm relay outlet is not active on this fault.	Erase the B10 flow outlet sensor declaration of the input (BX1) or declare the LMS as the flow master.	
353			Boiler flow programmed, but no cascade outlet sensor (common outlet B10) declared.	Check the declaration of the common outlet sensor B10.	
373			Extension module 3 error.	Check the ribbon cable of the bus connected to the AVS75 at address 3.	
384	391		Interfering light. The LMS detects a flame when the gas valve is closed.		
386	All		Fan problem	Contact After Sales.	
426	528		Fumes valve feedback signal: - The valve is closed, while it should be open during startup. - Loss of the valve closed signal for 50s, while the boiler is working. - No loss of valve closed signal 50s after the boiler stops.		
432	746		Functional earth absent. The earth of the ionisation sensor does not use the same reference and the boiler power supply.	Check that the heating body is properly earthed (reference).	

Maintenance code	Service description	
1	Number of burner operating hours exceeded	
2	Number of burner starts exceeded	
3	Exceeding the maintenance interval	
10	Change the batteries of the outdoor sensor	
22	Hydraulic pressure 3 in the heating circuit too low (lower pressure limit 3 not reached)	
25	Automatic water filling active	

SOMMAIRE

SI	MPLI	FIED USE GUIDE	3
	Navig	ation between the various screens	3
	Main	parameters	3
DI	AGN	DSTIC AID	4
4	\A/A E	NINGS AND RECOMMENDATIONS	11
1.	тужг 1.1.	Symbols used in this document	
	1.1.	Qualification of personnel for installation and maintenance	
	1.3.	Safety guidelines	
2.	ELE	CTRICAL CONNECTION	
	2.1.	Characteristics of electrical power supply	
	2.2.	Cable cross-section	
	2.3.	Electrical connections on terminal strips	
	0 4	2.3.1. Power and signal connection terminals	
	2.4.	Fuses	
3.	USE	R INTERFACE	
•.	3.1.	Presentation of interface:	
	3.2.	Display	
		3.2.1. Predefined basic display	
		3.2.2. Display of a fault	
	3.3.	Operating modes	17
		3.3.1. Heating mode	17
		3.3.2. DHW mode	17
		3.3.3. Manual temperature mode	
		3.3.4. Manual power mode	
		3.3.5. Cleaning mode	
		3.3.6. Purge mode	
	3.4.	Adjustment of setpoints	
		3.4.1. Heating setpoint adjustment	
	2 5	3.4.2. Adjustment of DHW setpoint	
	3.5. 3.6.	Boiler states Parameter configurations	
	5.0.	3.6.1. "End user" parameter configurations	
		3.6.2. "Configuration" and "specialist" parameter configurations	
		3.6.3. Setting the various parameters	
4.	OPE	RATING CYCLES	23
5.	LIST	OF PARAMETERS	24
6.	"US	ER INTERFACE" PARAMETERS	32
	6.1.	Setting the time	
	6.2.	User interface	
	6.3.	Heating circuit assignment	
	6.4.	Software version	

7.	"HE	ATING	CIRCUITS" PARAMETERS	35
	7.1.	Basic s	settings	
		7.1.1.	Operating mode	
		7.1.2.	Time schedule program (heating circuits 1, 2 and 3, DHW, 5)	
		7.1.3.	Vacation (heating circuits 1, 2 and 3)	
		7.1.4.	Setpoint values	
		7.1.5.	Heating curve	
		7.1.6.	Flow temperature setpoint	
		7.1.7.	Flow temperature setpoint of room thermostat	
		7.1.8.	Delay heat request	
	7.2.	Optimis	sation	
		7.2.1.	ECO functions	
		7.2.2.	Influence of ambient temperature	
		7.2.3.	Limitation of ambient temperature	
		7.2.4.	Terminal regul heating limitation	
		7.2.5.	Accelerated heating	
		7.2.6.	Accelerated lowering of heating	
		7.2.7.	Optimisation on startup and stop	
		7.2.8.	Increase of reduced setpoint	
		7.2.9.	Overtemperature protection	
		7.2.10.		
		7.2.11.	-	
		7.2.12.		
		7.2.13.		
			Operating mode changeover	
	7.3.		l of actuators	
	7.0.	7.3.1.	Uninterrupted operation of pumps	
		7.3.2.	Control by mixing valve	
		7.3.3.	Speed-controlled pump	
	7.4.		Iled slab drying	
	7.4.	Control		
8.	"DO	MESTI	IC HOT WATER" PARAMETERS	51
•	8.1.		settings	
	0	8.1.1.	Setpoint value	
		8.1.2.	Release	
		8.1.3.	Priority	
	8.2.		gionella function	
	8.3.	-	pump Q4	
	8.4.		switching	
	0.4.	mode a		
9.	"CO	NSUM	ER CIRCUITS" PARAMETERS	
•	9.1.		setpoint	
	9.2.		de signal / blocking signal	
	9.3.		e tank / primary regulator	
	0.0.	otoragt		
10	. "PO	ol" pa	ARAMETERS	58
	10.1.	Heating	g setpoint	
11.	PRI	MARY	REGULATOR / PUMP	59
12			" PARAMETERS	
	12.1.	Operati	ting mode	

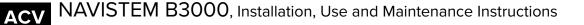
EN

12.2.	Operating limits	60
	12.2.1. Min. and max. setpoints	60
	12.2.2. Manual mode	61
	12.2.3. Frost protection setpoint	61
	12.2.4. Minimum return setpoint	61
12.3.	Optimisation	61
	12.3.1. Burner control	61
	12.3.2. Timing of pumps	62
	12.3.3. Burner startup time delay	
	12.3.4. Boiler pump speeds	
	12.3.5. Rate monitoring	
	12.3.6. Boiler power	
12.4	Regulation of heating and DHW	
	12.4.1. Fan	
	12.4.2. Differentials	
	11.4.3. Drain function	
	SCADE" PARAMETERS	
13.1.	Operating mode	70
13.2.	Regulation	70
13.3.	Boiler sequence	71
13.4.	Return temperature min. limitation	72
	W TANK" PARAMETERS	
	Load regulation	
14.2.		
14.3.	5 1	
14.4.		
14.5.	5	
14.6.		
14.7.		
14.8.		
14.9.	DHW pump speed-commanded	76
15. GE	NERAL FUNCTIONS" PARAMETERS	
16. "CO	NFIGURATION" PARAMETERS	
	Hydraulic configuration	
-	16.1.1. Heating and cooling circuits	
	16.1.2. DHW tank	
	16.1.3. Separation	
	16.1.4. Boiler	
	16.1.5. Solar	
	16.1.6. Storage tank	
16.0		
16.2.	o	
	16.2.1. Output, relay QX	
	16.2.2. Sensor input BX	
	16.2.3. Inputs H1 / H5	
10.0	16.2.4. Outputs 0-10V / PWM P1	
16.3.	Extension module configuration	
	16.3.1. Extension module EX 1 / 2 / 3	
	16.3.2. Extension module QX 1 / 2 / 3	

		16.3.3. Extension module BX	
		16.3.4. Extension module H2 1 / 2 / 3	
	16.4.	System configuration	
		16.4.1. Type of sensor / corrections	
		16.4.2. Building and ambient temperature model	
		16.4.3. Setpoint control	
		16.4.4. Frost protection	
		16.4.5. Pump / valve degumming	
		16.4.6. Register sensor	
	16.5.	Information	
		16.5.1. Installation diagram	
		16.5.2. Device Features	97
		16.5.3. "OPENTHERM" parameters	
17.		B SYSTEM" PARAMETERS	
		LPB address	
	17.2.	Bus supply function	
	17.3.		
	17.4.	, ,	
		Centralised functions	
		Clock	
	17.7.		
	17.8.	"MODBUS" parameters	
18.		ROR" PARAMETERS	
		Information message	
		Fault indication function History	
10	"МЛ	INTENANCE / SPECIAL MODE" PARAMETERS	109
13.	19.1		
		Cleaning	
		Maintenance function	
		Service	
20	"IND	PUT / OUTPUT TEST" PARAMETERS	113
20.		Relay output test	
		Sensor inputs test	
		Test of inputs H1 / H2 / H3 / H4 / H5 / H6 / H7	
		Test of EX inputs (extension module)	
21.	"ST/	ATE" PARAMETERS	116
22.	"DIA	GNOSTICS" PARAMETERS	
	22.1.	Cascade diagnostic	
		Generator diagnostic	
	22.3.	Consumer diagnostic	
23.	"SA	FETY UNIT" PARAMETERS	126
	23.1.	Operation	
	23.2	Chimney drying function	127

1. WARNINGS AND RECOMMENDATIONS

1.1. Symbols used in this document


INFORMATION:		This symbol refers to information.
Λ	CAUTION:	Failure to observe these guidelines may result in damage to the installation or other systems.
	DANGER:	Failure to observe these guidelines can result in electrocution.

1.2. Qualification of personnel for installation and maintenance

Installation and maintenance of the unit must only be performed by qualified professional technicians in compliance with the applicable regulations and practices, in particular the applicable national and local standards relative to low voltage electrical installations.

1.3. Safety guidelines

Always shut down the boiler and close the main gas supply before performing any work on the boiler controller.

2. ELECTRICAL CONNECTION

	DANGER:	Before any intervention, make sure the main electrical power supply is switched off.
\wedge	CAUTION:	The ground conductor must be longer than the phase and neutral conductors.
\wedge	CAUTION:	Observe the phase polarity - neutral for electrical connections.

2.1. Characteristics of electrical power supply

Electrical connections will only be made after other assembly operations (fixing,assembling,..) on the boiler will have been performed

The electrical installation must observe the CE standards relative to electrical connections and, in particular, the grounding connection.

This unit is designed to operate with a nominal voltage of 230 V, +10% / -15%, 50 Hz.

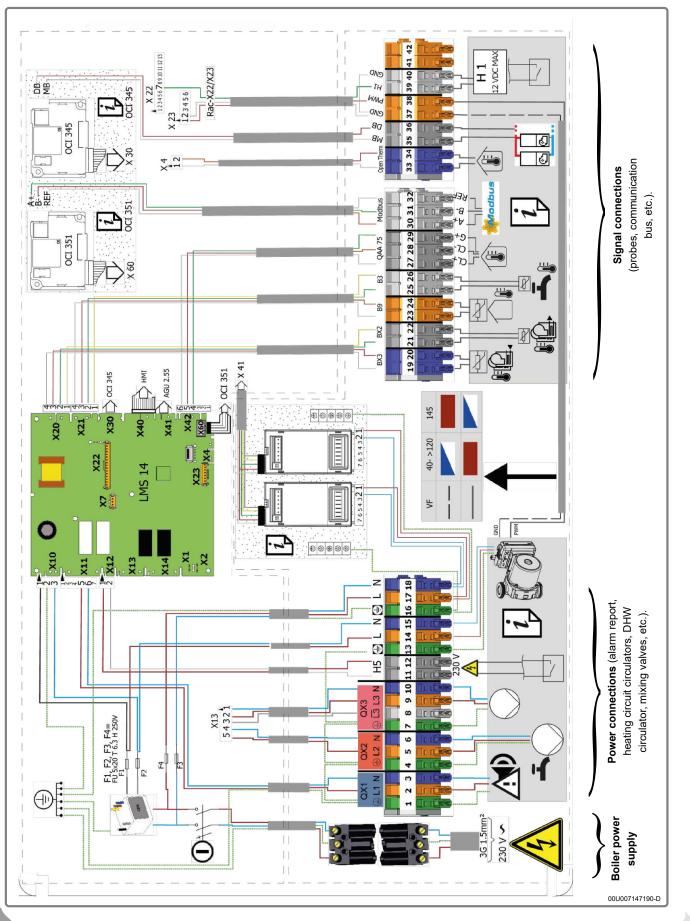
Please respect the following rules when connecting to avoid damaging the ionising current measurement:

- In single-phase: respect the live neutral polarity
- In two-phase: due to the 120° difference between phases, the phases must be connected in the right order. Connect to terminal N of the NAVISTEM B3000 the phase in advance on the one connected to terminal L.

If you do not have a phase difference measurement resource, cable the NAVISTEM B3000 power supply in the 2 configurations then in both cases check the ionising current by going to the "generator diagnostic" menu in setting 8329.

2.2. Cable cross-section

The cable cross-sections given below are given for information and do not release the installer from checking that they correspond to the needs and satisfy all applicable local and national standards.


If a cable is damaged, it must be replaced by the manufacturer, the manufacturer's aftersales service or any similar qualified person to avoid any danger.

Cable	Terminal strips	Copper conductor cross-section
Power supply	Power supply	3 x 1,5 mm²
Power	QX1, QX2, QX3	3 x 1,5 mm²
Signals	BX2, BX3, B3, B9, H1, H5, UX2, UX3, ambient temperature sensors	2 x 0,5 mm²

2.3. Electrical connections on terminal strips

2.3.1. Power and signal connection terminals

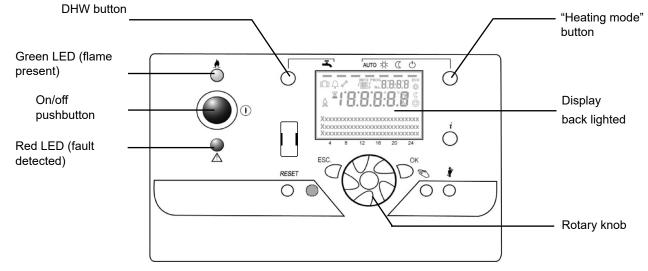
2.4. Fuses

The boiler controller is equipped with 4 identical fuses (T 6,3 H 250V - 5x20 ceramic). Each has a specific location and function:

Reference	Function
F1 and F2	Boiler controller protection, fan
F3 and F4	Protection of AGU2.550 options

See diagram on previous page

USER INTERFACE 3.


3.1. Presentation of interface:

- The boiler controller user interface comprises:
- -a blue pushbutton (on/off),
- a backlighted LCD display,
- -8 function keys,
- A rotary adjustment knob,
- A red LED:

The LED comes on steady when a non-blocking fault is detected (following correction, the LED goes off). The LED flashes when a blocking fault is detected (in this case, the LED goes off after the fault has been corrected and the reset button on the interface has been pressed),

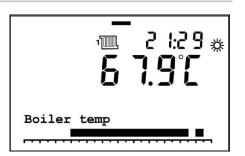
- A green LED:

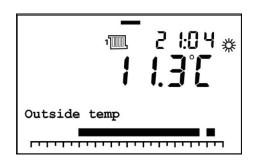
This LED comes on when the flame is present. All the customer settings and possible parameter definitions are made on this interface. It is also used to look up the information concerning operation of the boiler.

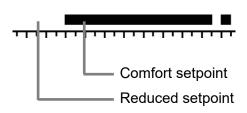
3.2. Display

The screen summarises the state of the boiler: operating mode, time, time schedule, boiler temperature, flame present, possible fault. Pictograms:

- Comfort mode **PROG** Programming Reduced mode ECO ECO function Frost protection Vacation mode mode ¹ Heating circuit
 - Process in progress
 - Flame present
- Maintenance
- No. Parameter number


 $\Box \Delta \mathscr{A}$ C Xxxxxxxxxxxxxxxxxxxxxxxxx Χχαχαχάχαχα χαραγικά τη αγγαρική τη αγγαρί τη αγγαρίς τη αγγαρική τη αγγαρίς τη

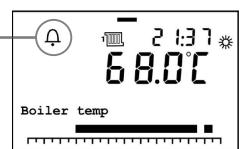

Alarm


3.2.1. Predefined basic display

The basic display depends on the boiler operating mode chosen by the user:

- In constant boiler flow temperature mode, the boiler flow water temperature is displayed.
- In regulation mode as a function of outdoor temperature or as a function of the room temperature or both, the outdoor temperature is displayed.

The bottom of the screen is displayed with a scale of 0 to 24 corresponding to the hours of a day. The comfort setpoint request phases are represented by a black square above the scale. The other parts without square correspond to the reduced setpoint requests.


3.2.2. Display of a fault

When a non-blocking fault is detected, a small bell is displayed at the top left of the screen. To identify the fault, press the information key. $\mathbf{1}$. This type of fault does not result in a blocking safety lockout requiring manual intervention.

Once the source of the fault has been eliminated, the clock automatically disappears.

When the fault places the boiler in a safety lockout condition, the fault code and its text are displayed continuously on the screen. Similarly, a small bell appears at the top left of the screen.

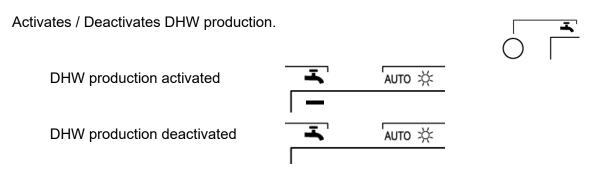
To reset the boiler controller, eliminate the source of the fault, then press the reset button.

Ċ	INFO	
Error 50:DHW	sensor	

3.3. **Operating modes**

3.3.1. Heating mode

This is used to select the heating mode among the Standby, Comfort, Eco and Auto modes.

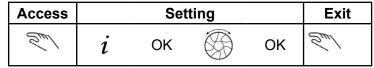

Note:

Where 2 or 3 independently adjusted heating circuits are used, press once on the heating mode key, then select the concerned circuit using the rotary adjustment knob and validate by OK.

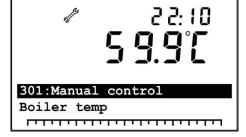
- Standby No internal heat request is taken into account. The frost protection function is active. The external heat requests (0-10 V or LPB bus) remain active except with cascade application.
- Comfort Continuous "comfort" mode. The burner power is adapted to satisfy the heating setpoint.
- **Reduced** Permanent reduced mode. The burner power is adapted to satisfy the reduced heating setpoint.
- Auto Depending on the time schedule programmed, the regulator alternates the comfort and reduced modes. With a cascade application, engages the boiler in a cascade.

Аυто 🔆 🕧	Ċ	0
auto 🔆	(<u>ر)</u>
auto ☆	0	Ċ
auto 🔆	C	Ċ
алто 🔆	\langle	\bigcirc

3.3.2. DHW mode


3.3.3. Manual temperature mode

This mode is used to run the boiler in accordance with a special setpoint temperature.


In this mode, not all faults are transferred to the "alarm" output.

Sequence of keys to access the function:

The boiler regulates its power to achieve the defined setpoint.

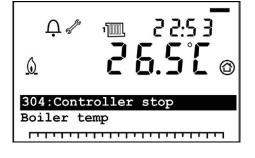
While this function is active, an override signal¹ is generated to evacuate the calories.

IMPORTANT:

- Deactivates the 3 channel valve regulations.
- Activeates the operation of all the declared pumps, opens all the 3 channel valves
- Not to be used with under-floor heating.

3.3.4. Manual power mode

This mode is used to manually define the burner heat release.


Sequence of keys to access the function:

Access	Setting			Exit	
алто 🔆 (() З seconds	i	OK		OK	AUTO 🔆 ((()) 3 seconds

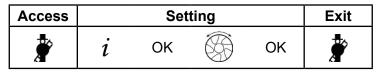
The relative power setpoint of²the burner is displayed on the screen.

The rotary adjustment knob is used to adjust the value of the setpoint in steps of 1 %.

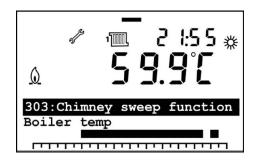
While this function is active, an override signal² is generated to evacuate the calories.

¹ Forcing signal: causes switching on of the pumps, and/or opening of the 3 way valves of the connected heating circuits to remove the heat

$$\%Q_{cal} = \frac{Puissance_{relative} \cdot (100 - \%Q_{min})}{100} + \%Q_{min}$$


 ² Relative power: this is the effective power of the burner, referred to its modulation range.
 0% corresponds to minimum power, 100% corresponds to maximum burner power.
 To calculate the burner load ratio (heat input percentage), the following formula is used:

3.3.5. Cleaning mode

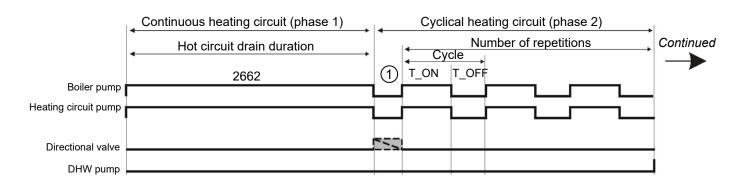

This mode is used to run the burner at full load.

Sequence of keys to access the function:

The burner stops by cutout of the limiter electronic thermostat

While this function is active, an override signal¹ is generated to evacuate the calories.

1 Forcing signal: causes switching on of the pumps, and/or opening of the 3 way valves of the connected heating circuits to remove the heat.


3.3.6. Purge mode

This mode is used to facilitate purging the installation water side (example, after the first time the installation is filled with water).

The drain function may include up to 4 phases that may be preselected. The phases differ according to whether the function is to drain the heating or DHW circuits and the pumps must be commanded cyclically or or statically for the whole phase. During these phases, a three-channel valve is taken into predefined positions.

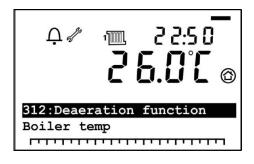
The function is automatically interrupted when the predefined drain phases expire. The drain function may also be interrupted manually by pressing the same button again for 3 seconds.

When the function starts, the safety unit for the burner is on standby; the burner is stopped during the whole drain.

Mixer heating valve / 3-channel valve opening time

Continued	Perm	nanent DHW (phase 3)	→ ◀───		Cycli	cal DHW (p	ohase 4)	
	•	DHW drain duration	→		Num	per of repet	itions	
				Су	cle			
	(2)	2663	(2)	T_ON	T_OFF			
Boiler pump	<u> </u>		_					<u>-</u> 1
Heating circuit pump								
Directional valve								
DHW pump	and the second se							

(2)

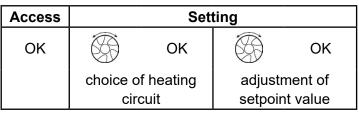

3-channel valve after DHW opening time (if the Directional valve available is configured).

Refer to parameters 2630, 2655, 2656, 2657, 2662, 2663 and 7147 to configure this mode before using it.

Sequence of keys to access the function:

Access	Exit			
Sul	automatic at	or	Sul	
3 seconds	end of purge	01	3 seconds	

The pumps are switched on and off several times.



3.4. Adjustment of setpoints

3.4.1. Heating setpoint adjustment

The comfort temperature setpoint can be adjusted in 2 ways, either directly using the standard screen, or using the programming screen. The other temperature setpoints (reduced and frost protection) can only be adjusted using the programming screen.

1) Adjustment using standard screen:

2) Adjustment using programming screen:

Access	Setting					
OK		ОК		ОК		ОК
	choice o circ	0	choice of s adj	setpoint to ust	adjustr setpoir	

3.4.2. Adjustment of DHW setpoint

The DHW temperature setpoint can be adjusted using the programming screen between 40°C and 65°C.

Access	Setting					
OK	б ок			OK		
	Choice of <i>Domestic</i> Hot Water header		adjustr setpoir	ment of it value		

The DHW setpoint must be defined in accordance with the applicable regulation to prevent any hazard with respect to legionella.

3.5. Boiler states

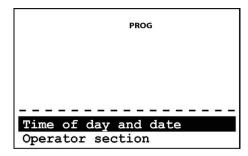
On the basic display, you can scroll basic information concerning the boiler (see list below).

Access	Setting	Exit
i		ESC

1	Boiler temperature, heating circuit 1			
2	Boiler temperature, heating circuit 2			
3	Boiler temperature, heating circuit 3			
4	Outdoor temperature			
5	Min. outdoor temperature			
6	Max. outdoor temperature			
7	DHW temperature			
8	State of heating circuit 1			
9	State of heating circuit 2			
10	State of heating circuit 3			
11	DHW state			
12	Heater status			
13	Date			
14	Customer service tel.			

3.6. Parameter configurations

Depending on the functions controlled, the access level to the settings is different. There are 3 access levels:

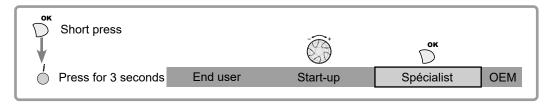

- E: End user,
- C: Commissioning (acceptance, startup),
- S: Specialist (technical level)

3.6.1. "End user" parameter configurations

The "end user" configuration mode is accessed on the standard display by pressing the OK key. The « PROG » pictogram and the first 2 headers are displayed on the screen.

The rotary adjustment button is used to scroll the list of parameters. Once you have reached the parameter to be modified, press OK. The parameter value flashes. Adjust the value using the rotary knob.

The new value is validated by pressing OK



3.6.2. "Configuration" and "specialist" parameter configurations

The "Commissioning" and "Specialist" parameter configurations are accessed on the standard display by pressing the OK key, then on the information key for 5 seconds. i.

Use the rotary adjustment knob to reach the desired level: *Commissioning* or *Specialist*, then validate your selection by OK.

The Commissioning access level integrates the End User level. Similarly, the *Specialist* level integrates the *"Commissioning" level*.

3.6.3. Setting the various parameters

On the main menu, once you have obtained the desired level:

- Turn the control knob to scroll the menu.
- Once the desired menu appears, press OK to validate.
- Turn the control knob to adjust the setting.
- · Press OK to validate the setting.

If no setting is performed during 8 minutes, the screen automatically returns to the basic display.

4. OPERATING CYCLES

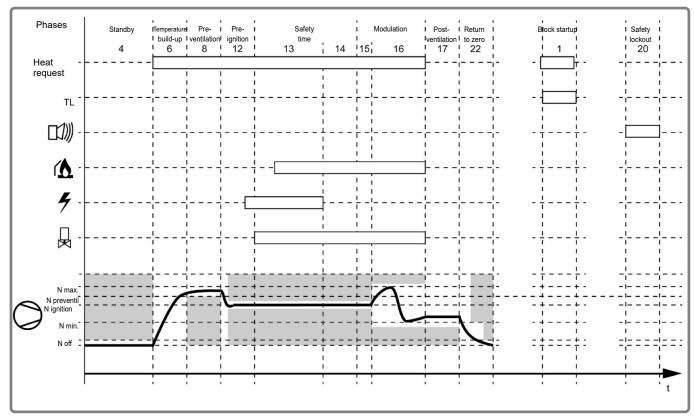
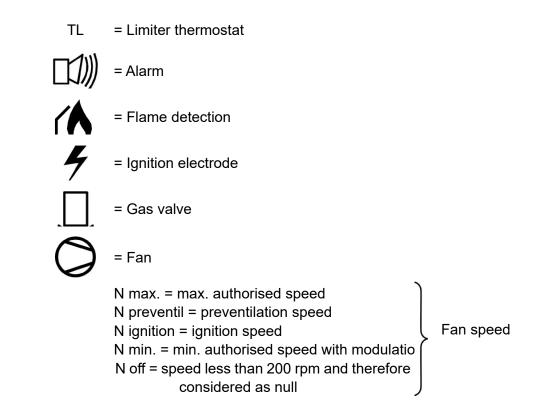



figure 1 - Cycles

<u>Key:</u>

Note:

In the event of failure, the boiler controller automatically initiates several startup attempts.

5. LIST OF PARAMETERS

Line No.	Programming	Line No.	Programming
	Time of day and date		Time program 4 / DHW
1	Hours / minutes	560	Preselection
2	Day / month	561	First period start time
3	Year	562	First period stop time
5	Start of summertime	563	Second period start time
6	End of summertime	564	Second period stop time
	Operator section	565	Second period start time
20	Language	566	Second period stop time
22	Info	576	Default values
26	Operation lock		Time program 5
27	Programming lock	600	Preselection
28	Direct adjustment	601	First period start time
29	Units	602	First period stop time
42	Assignment device 1	603	Second period start time
44	Operation HC2	604	Second period stop time
46	Operation HC3/P	605	Second period start time
70	Software version	606	Second period stop time
	Time prog heating circuit 1	616	Default values
500	Preselection		Holidays heating circuit 1
501	First period start time	641	Preselection
502	First period stop time	642	Begin (dd.mm)
503	Second period start time	643	End (dd.mm)
504	Second period stop time	648	Operating level
505	Second period start time		Holidays heating circuit 2
506	Second period stop time	651	Preselection
516	Default values	652	Begin (dd.mm)
	Time prog heating circuit 2	653	End (dd.mm)
520	Preselection	658	Operating level
521	First period start time		Holidays heating circuit 3
522	First period stop time	661	Preselection
523	Second period start time	662	Begin (dd.mm)
524	Second period stop time	663	End (dd.mm)
525	Second period start time	668	Operating level
526	Second period stop time		Heating circuit 1
536	Default values	710	Comfort setpoint
F 40	Time prog heating circuit 3	712	Reduced setpoint
540	Preselection	714	Frost protection setpoint
541	First period start time	716	Comfort setpoint max
542	First period stop time	720	Heating curve slope
543	Second period start time	721	Heating curve displacement
	Second period stop time	726	Heating curve adaptation
544	Cocord pariod start times	1 720	Summer/winter heating limit
545	Second period start time	730	
	Second period start time Second period stop time Default values	730	24-hour heating limit Flow temp setpoint min

Line No.	Programming	Line No.	Programming
742	Flow temp setpoint room stat	1046	Delay heat request
746	Delay heat request	1040	Room influence
750	Room influence	1060	Room temp limitation
760	Room temp limitation	1061	Heating limit room controller
761	Heating limit room controller	1070	Boost heating
770	Boost heating	1080	Quick setback
780	Quick setback	1090	Optimum start control max
790	Optimum start control max	1091	Optimum stop control max
791	Optimum stop control max	1100	Reduced setp increase start
800	Reduced setp increase start	1101	Reduced setp increase end
801	Reduced setp increase end	1109	Continuous pump operation
809	Continuous pump operation	1120	Overtemp prot pump circuit
820	Overtemp prot pump circuit	1130	Mixing valve boost
830	Mixing valve boost	1132	Actuator type
832	Actuator type	1133	TOR Switching differential
833	TOR Switching differential	1134	Actuator running time
834	Actuator running time	1135	Mixing valve Xp
835	Mixing valve Xp	1136	Mixing valve Tn
836	Mixing valve Tn	1150	Floor curing function
850	Floor curing function	1151	Floor curing setp manually
851	Floor curing setp manually	1155	Floor curing setp current
855	Floor curing setp current	1156	Floor curing day current
856	Floor curing day current	1161	Excess heat draw
861	Excess heat draw	1170	With buffer
870	With buffer	1172	With prim contr/system pump
872	With prim contr/system pump	1181	Starting speed
881	Starting speed	1182	Pump speed min
882	Pump speed min	1183	Pump speed max
883	Pump speed max	1188	Curve readj at 50% speed
888	Curve readj at 50% speed	1189	Filter time const speed ctrl
889	Filter time const speed ctrl	1190	Flow setp readj speed ctrl
890	Flow setp readj speed ctrl	1198	Operating level changeover
898	Operating level changeover	1200	Optg mode changeover
900	Optg mode changeover		Heating circuit 3
	Heating circuit 2	1310	Comfort setpoint
1010	Comfort setpoint	1312	Reduced setpoint
1012	Reduced setpoint	1314	Frost protection setpoint
1014	Frost protection setpoint	1316	Comfort setpoint max
1016	Comfort setpoint max	1320	Heating curve slope
1020	Heating curve slope	1321	Heating curve displacement
1021	Heating curve displacement	1326	Heating curve adaptation
1026	Heating curve adaptation	1330	Summer/winter heating limit
1030	Summer/winter heating limit	1332	24-hour heating limit
1032	24-hour heating limit	1340	Flow temp setpoint min
1040	Flow temp setpoint min	1341	Flow temp setpoint max
1041	Flow temp setpoint max	1342	Flow temp setpoint room stat
1042	Flow temp setpoint room stat	1346	Delay heat request

Line No.	Programming	Line No.	Programming
1350	Room influence	1663	Circulation setpoint
1360	Room temp limitation	1680	Optg mode changeover
1361	Heating limit room controller		Consumer circuit 1
1370	Boost heating	1859	Flow temp setp cons request
1380	Quick setback	1874	DHW load priority
1390	Optimum start control max	1875	Excess heat draw
1391	Optimum stop control max	1878	With buffer
1400	Reduced setp increase start	1880	With prim contr/system pump
1401	Reduced setp increase end		Consumer circuit 2
1409	Continuous pump operation	1909	Flow temp setp cons request
1420	Overtemp prot pump circuit	1925	Excess heat draw
1430	Mixing valve boost	1928	With buffer
1432	Actuator type	1930	With prim contr/system pump
1433	TOR Switching differential		Consumer circuit 3
1434	Actuator running time	1959	Flow temp setp cons request
1435	Mixing valve Xp	1974	DHW load priority
1436	Mixing valve Tn	1975	Excess heat draw
1450	Floor curing function	1978	With buffer
1451	Floor curing setp manually	1980	With prim contr/system pump
1455	Floor curing setp current		Swimming pool
1456	Floor curing day current	2056	Setpoint source heating
1461	Excess heat draw		Regulator / primary pump
1470	With buffer	2110	Minimum flow setpoint T°
1472	With prim contr/system pump	2111	Minimum flow setpoint T°
1481	Starting speed	2130	On mixing valve elevation
1482	Pump speed min	2150	Pre-regulator/feed pump
1483	Pump speed max	_	Boiler
1488	Curve readj at 50% speed	2203	Release below outside temp
1489	Filter time const speed ctrl	2208	Full charging buffer
1490	Flow setp readj speed ctrl	2210	Setpoint min
1498	Operating level changeover	2212	Setpoint max
1500	Optg mode changeover	2214	Setpoint manual control
	Domestic hot water	2217	Setpoint frost protection
1610	Nominal setpoint	2243	Burner off time min
1612	Reduced setpoint	2250	Pump overrun time
1614	Nominal setpoint max	2253	Pump overr time after DHW
1620	Release	2270	Return setpoint min
1630	Charging priority	2321	Starting speed
1640		2322	Pump speed min
1641	Legionella funct periodically	2323	Pump speed max
1642	Legionella funct weekday	2324	Coef.P of boiler pump PID Q1 Coef.P of boiler pump PID Q1
1644	Legionella funct time	2325	Coef.P of boiler pump PID Q1
1645	Legionella funct setpoint	2326	Output nominal
1646	Legionella funct duration	2330	Output hominal Output basic stage
1647	Legionella funct circ pump	2331	Output dasic stage Output at pump speed min
1660	Circulating pump release	2334	Output at pump speed min
1661	Circulating pump cycling	2000	Louibar ar bamb sheen may

No.	Programming		.ine No.	Programming
2441	Fan speed heating max	5	5060	El imm heater optg mode
2442	Fan speed full charging max	5	5061	El immersion heater release
2444	Fan speed DHW max		5062	El immersion heater control
2450	Regulator delay		5085	Excess heat draw
2452	Cruise control speed delay		5090	With buffer
2454	Switching diff on HCs	5	5092	With prim contr/system pump
2455	Switching diff off min HCs	5	5101	Pump speed min
2456	Switching diff off max HCs	5	5102	Pump speed max
2457	Settling time HCs	5	5108	Starting speed charg pump
2460	Switching diff on DHW			General functions
2461	Switching diff off min DHW	5	5570	Temp diff on dT contr 1
2462	Switching diff off max DHW	5	5571	Temp diff off dT contr 1
2463	Settling time DHW	5	5572	On temp min dT contr 1
2470	Delay heat req special op		5573	Sensor 1 controller 1
2503	Parameter	5	5574	Sensor 2 controller 1
2550	Gas energy metering	5	5575	On time min dT contr 1
2551	Gas meter correction	5	5577	Pump/valve kick K21
2560	Smoke shutter stop delay	5	5580	Temp diff on dT contr 2
2630	Auto deaeration procedure	5	5581	Temp diff off dT contr 2
2655	ON time deaeration	5	5582	On temp min dT contr 2
2656	OFF time deaeration	5	5583	Sensor 1 controller 2
2657	Number of repetitions	5	5584	Sensor 2 controller 2
2662	Deaeration time heat circuit	5	5585	On time min dT contr 2
2663	Deaeration time DHW	5	5587	Pump/valve kick K22
	Cascade			Configuration
3510	Lead strategy	5	5710	Heating circuit 1
3511	Output band min	5	5715	Heating circuit 2
	Output band max			
3512		5	5721	Heating circuit 3
	Release integral source seq		5721 5730	Heating circuit 3 DHW sensor
3530		5		
3530 3531	Release integral source seq	5	5730	DHW sensor
3512 3530 3531 3532 3533	Release integral source seq Reset integral source seq	5 5 5	5730 5731	DHW sensor DHW controlling element
3530 3531 3532	Release integral source seq Reset integral source seq Restart lock	5 5 5 5 5	5730 5731 5732	DHW sensor DHW controlling element Pump off change div valve
3530 3531 3532 3533	Release integral source seq Reset integral source seq Restart lock Switch on delay	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5730 5731 5732 5733	DHW sensor DHW controlling element Pump off change div valve Delay pump off
3530 3531 3532 3533 3534	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage		5730 5731 5732 5733 5733	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve
3530 3531 3532 3533 3534 3535	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW		5730 5731 5732 5733 5734 5737	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve
3530 3531 3532 3533 3534 3535 3540	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over		5730 5731 5732 5733 5733 5734 5737 5738	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve
3530 3531 3532 3533 3534 3535 3540 3541	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion		5730 5731 5732 5733 5734 5737 5738 5774	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min		5730 5731 5732 5733 5733 5734 5737 5738 5738 5774 5840	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source		5730 5731 5732 5733 5734 5737 5738 5774 5840 5841	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560 3562	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers		5730 5731 5732 5733 5734 5734 5737 5738 5774 5840 5841 5870	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560 3562	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers DHW storage tank		5730 5731 5732 5733 5734 5737 5738 5738 5774 5840 5840 5841 5870 5890	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank Relay output QX1
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560 3562 5020 5021	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers DHW storage tank Flow setpoint boost		5730 5731 5732 5733 5734 5737 5738 5774 5840 5841 5840 5841 5870 5890 5891	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank Relay output QX1 Relay output QX2
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560 3562 5020	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers DHW storage tank Flow setpoint boost Transfer boost Type of charging		5730 5731 5732 5733 5734 5734 5737 5738 5774 5840 5841 5870 5890 5891 5892	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank Relay output QX1 Relay output QX2 Relay output QX3 Sensor input BX2
3530 3531 3532 3533 3534 3535 3540 3541 3544 3560 3562 5020 5021 5022 5030	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers DHW storage tank Flow setpoint boost Transfer boost Type of charging Charging time limitation		5730 5731 5732 5733 5734 5734 5734 5734 5734 5734 5734	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank Relay output QX1 Relay output QX2 Relay output QX3 Sensor input BX2 Sensor input BX3
3530 3531 3532 3533 3534 3535 3540 3541 3560 3562 5020 5021 5022	Release integral source seq Reset integral source seq Restart lock Switch on delay Forced time basic stage Switch-on delay DHW Auto source seq ch'over Auto source seq exclusion Leading source Return setpoint min Return influence consumers DHW storage tank Flow setpoint boost Transfer boost Type of charging		5730 5731 5732 5733 5734 5737 5738 5774 5840 5841 5840 5890 5891 5892 5931	DHW sensor DHW controlling element Pump off change div valve Delay pump off Basic position DHW div valve Optg action DHW div valve Midposition DHW div valve Ctrl boiler pump/DHW valve Solar controlling element External solar exchanger Combi storage tank Relay output QX1 Relay output QX2 Relay output QX3 Sensor input BX2

Line No.	Programming		Line No.	
5954	Function value 1 H1 (F1)		6098	
5955	Voltage value 2 H1 (U2)		6100	
5956	Function value 2 H1 (F2)		6110	ľ
5977	Function input H5		6116	
5978	Contact type H5		6117	
6020	Function extension module 1		6120	
6021	Function extension module 2		6127	
6022	Function extension module 3		6200	
6024	Funct input EX21 module 1		6205	
6026	Funct input EX21 module 2		6220	Γ
6028	Funct input EX21 module 3		6230	Γ
6030	Relay output QX21 module 1		6231	Γ
6031	Relay output QX22 module 1		6234	T
6032	Relay output QX23 module 1	1	6351	Γ
6033	Relay output QX21 module 2		6355	Ť
6034	Relay output QX22 module 2		6356	Ť
6035	Relay output QX23 module 2		6357	t
6036	Relay output QX21 module 3		6359	T
6037	Relay output QX22 module 3			
6038	Relay output QX23 module 3		6600	Γ
6040	Sensor input BX21 module 1		6601	t
6041	Sensor input BX22 module 1		6604	t
6042	Sensor input BX21 module 2		6605	T
6043	Sensor input BX22 module 2		6610	t
6044	Sensor input BX21 module 3		6611	t
6045	Sensor input BX22 module 3		6612	Ť
6046	Function input H2 module 1		6620	T
6047	Contact type H2 module 1		6621	T
6049	Voltage value 1 H2 module 1(U1)		6623	T
6050	Function value 1 H2 module 1 (F1)		6624	Ť
6051	Voltage value 2 H2 module 1 (U2)		6625	Ť
6052	Function value 2 H2 module 1 (F2)		6631	t
6054	Function input H2 module 2		6640	T
6055	Contact type H2 module 2		6650	T
6057	Voltage value 1 H2 module 2(U1)		6651	Ť
6058	Function value 1 H2 module 2 (F1)		6652	Ť
6059	Voltage value 2 H2 module 2 (U2)		6653	t
6060	Function value 2 H2 module 2 (F2)	-1	6654	t
6062	Function input H2 module 3			-
6063	Contact type H2 module 3		6705	Τ
6065	Voltage value 1 H2 module 3(U1)	-	6706	t
6066	Function value 1 H2 module 3 (F1)	-	6745	Ť
6067	Voltage value 2 H2 module 3 (U2)	-	6800	t
6068	Function value 2 H2 module 3 (F2)	-	6805	t
6085	P1 output function	-	6810	t
6086	P1 signal logic output	-	6815	t
6097	Sensor type collector	-	6820	t

Line No.	Programming
6098	Readjustm collector sensor
6100	Readjustm outside sensor
6110	Time constant building
6116	Const tmps compens consig.
6117	Compens centr T° consigne
6120	Frost protection plant
6127	Pump/valve kick duration
6200	Save sensors
6205	Reset to default parameter
6220	Software version
6230	Info 1 OEM
6231	Info 2 OEM
6234	Boiler type
6351	Channel 1 opentherm function
6355	CC1 room controller
6356	CC2 room controller
6357	CC3 room controller
6359	DHW external control
0000	LPB system
6600	Device address
6601	Segment address
6604	Bus power supply function
6605	Bus power supply state
6610	Display system messages
6611	Syst messages alarm relay
6612	Alarm delay
6620	Action changeover functions
6621	Summer changeover
6623	Optg mode changeover
6624	Manual source lock
6625	DHW assignment
6631	Ext source in Eco mode
6640	Clock mode
6650	Outside temp source
6651	Modbus slave address
6652	Modbus parity
6653	Clock operation
6654	Number of modbus stop bits
	Fault
6705	SW diagnostic code
6706	Burn ctrl phase lockout pos
6745	DHW charging alarm
6800	History 1
6805	SW diagnostic code 1
6810	History 2
6815	SW diagnostic code 2
6820	History 3
0020	

Line No.	Programming	Line No.	Programming
6825	SW diagnostic code 3	7143	Controller stop function
6830	History 4	7145	Controller stop setpoint
6835	SW diagnostic code 4	7146	Deaeration function
6840	History 5	7147	Type of venting
6845	SW diagnostic code 5	7170	Telephone customer service
6850	History 6	1110	Input/output test
6855	SW diagnostic code 6	7700	Relay test
6860	History 7	7730	Outside temp B9
6865	SW diagnostic code 7	7750	DHW temp B3/B38
6870	History 8	7760	Boiler temp B2
6875	SW diagnostic code 8	7820	Sensor temp BX1
6880	History 9	7821	Sensor temp BX2
6885	SW diagnostic code 9	7822	Sensor temp BX3
6890	History 10	7823	Sensor temp BX4
6895	SW diagnostic code 10	7830	Sensor temp BX21 module 1
6900	History 11	7831	Sensor temp BX22 module 1
6905	SW diagnostic code 11	7832	Sensor temp BX21 module 2
6910	History 12	7833	Sensor temp BX22 module 2
6915	SW diagnostic code 12	7834	Sensor temp BX21 module 3
6920	History 13	7835	Sensor temp BX22 module 3
6925	SW diagnostic code 13	7840	Voltage signal H1
6930	History 14	7841	Contact state H1
6935	SW diagnostic code 14	7845	Voltage signal H2 module 1
6940	History 15	7846	Contact state H2 module 1
6945	SW diagnostic code 15	7848	Voltage signal H2 module 2
6950	History 16	7849	Contact state H2 module 2
6955	SW diagnostic code 16	7851	Voltage signal H2 module 3
6960	History 17	7852	Contact state H2 module 3
6965	SW diagnostic code 17	7854	Voltage signal H3
6970	History 18	7855	Contact state H3
6975	SW diagnostic code 8	7860	Contact state H4
6980	History 19	7862	Frequency H4
6985	SW diagnostic code 19	7865	Contact state H5
6990	History 20	7872	Contact state H6
6995	SW diagnostic code 20	7874	Contact state H7
	Service/special operation	7950	Input EX21 module 1
7040	Burner hours interval	7951	Input EX21 module 2
7041	Burn hrs since maintenance	7952	Input EX21 module 3
7042	Burner start interval		State
7043	Burn starts since maint	8000	State heating circuit 1
7044	Maintenance interval	8001	State heating circuit 2
7045	Time since maintenance	8002	State heating circuit 3
7050	Fan speed ionization current	8003	State DHW
7051	Message ionization current	8005	State boiler
7130	Chimney sweep function	8007	State solar
7131	Burner output	8008	State solid fuel boiler
7140	Manual control	8009	State burner

ine Io.	Programming	Line No.	Programming
10	State buffer	8313	Control sensor
1	State swimming pool	8314	Boiler return temp
	Diagnostics cascade	8315	Boiler return temp set
0	Priority source 1	8316	Flue gas temp
1	State source 1	8318	Flue gas temp max
)2	Priority source 2	8321	Primary exchanger temp
)3	State source 2	8323	Fan speed
4	Priority source 3	8324	Set point fan
05	State source 3	8325	Current fan control
06	Priority source 4	8326	Burner modulation
07	State source 4	8327	Water pressure
08	Priority source 5	8329	Ionization current
09	State source 5	8330	Hours run 1st stage
10	Priority source 6	8331	Start counter 1st stage
111	State source 6	8338	Hours run heating mode
112	Priority source 7	8339	Hours run DHW
112	State source 7	8366	Boiler throughput
114	Priority source 8	8378	Overall heating energy
15	State source 8	8679	Overall DHW energy
16	Priority source 9	8380	Global Energy
117	State source 9	8381	Énergie gaz chauffage
118	Priority source 10	8382	DHW gas energy
10	State source 10	8383	
20	Priority source 11	8383	Gas energy Current phase number
20	State source 11	8499	Collector pump 1
21		8501	Solar ctrl elem buffer
22 23	Priority source 12 State source 12	8501	
			Solar ctrl elem swi pool
24	Priority source 13	8505	Speed collector pump 1
25	State source 13	8506	Speed solar pump ext exch
26	Priority source 14	8507	Speed solar pump buffer
127	State source 14	8508	Speed solar pump swi pool
128	Priority source 15	8510	Collector temp 1
29	State source 15	8511	Collector temp 1 max
130	Priority source 16	8512	Collector temp 1 min
131	State source 16	8513	dt collector 1/DHW
138	Cascade flow temp	8514	dt collector 1/buffer
139	Cascade flow temp setp	8515	dt collector 1/swimming pool
140	Cascade return temp	8519	Solar flow temp
41	Cascade return temp setp	8520	Solar return temp
50	Source seq ch'over current	8526	24-hour yield solar energy
	Diagnostics heat generation	8527	Total yield solar energy
304	Boiler pump Q1	8530	Hours run solar yield
308	Boiler pump speed	8531	Hours run collect overtemp
309	Bypass pump speed	8532	Hours run collector pump
310	Boiler temp	8560	Solid fuel boiler temp
11	Boiler setpoint	8570	Hours run solid fuel boiler

NO.Diagnostics consumers8700Outside temp8701Outside temp min8702Outside temp pattenuated8703Outside temp composite8704Outside temp composite8730Heating circuit pump 18731Heat circ mix valv 1 open8732Heat circ mix valv 1 open8744Room temp 18745Room setpoint 18744Room setpoint 18745Flow temp setpoint 18746Room thermostat 18747Room thermostat 18748Room thermostat 18769Heat circ mix valv 2 open8761Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp 28775Room temp 28776Room temp 28777Room temp 28778Room thermostat 28779Heating circuit pump 38779Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room thermostat 38803Flow temp 38804Flow temp 48835DHW temp 48835DHW temp 48835DHW temp 48835DHW temp 58835DHW temp 68835DHW temp 88835DHW temp 88	Line	Programming
8700Outside temp8701Outside temp min8702Outside temp attenuated8703Outside temp composite8704Outside temp composite8730Heating circuit pump 18731Heat circ mix valv 1 open8732Heat circ mix valv 1 close8740Room temp 18741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18745Room thermostat 18760Heat circ mix valv 2 open8761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28775Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room temp 38803Flow temp 38804Flow temp 38805DHW pump8830DHW temp 18831DHW temp 28835DHW temp 48836DHW temp 58835Instart WH setpoint8835Instart WH setpoint8835Instart WH setpoint8835Flow temp setp VK18835 <t< th=""><th>No.</th><th></th></t<>	No.	
8701 Outside temp min 8702 Outside temp attenuated 8703 Outside temp composite 8730 Heating circuit pump 1 8731 Heat circ mix valv 1 open 8732 Heat circ mix valv 1 close 8740 Room temp 1 8741 Room setpoint 1 8742 Room model temperature 8743 Flow temp setpoint 1 8744 Flow temp setpoint 1 8745 Room thermostat 1 8760 Heat circ mix valv 2 open 8761 Heat circ mix valv 2 close 8770 Room temp 2 8771 Room setpoint 2 8772 Room model temperature 8773 Flow temp 2 8774 Room temp 2 8777 Room temp 3 8778 Room thermostat 2 8779 Room thermostat 2 8779 Room thermostat 3 8800 Room model temperature 8793 HC mixing valve 3 open 8794 HC mixing valve 3 closed <td< td=""><td></td><td>Diagnostics consumers</td></td<>		Diagnostics consumers
8702 Outside temp max 8703 Outside temp attenuated 8704 Outside temp composite 8730 Heating circuit pump 1 8731 Heat circ mix valv 1 open 8732 Heat circ mix valv 1 close 8740 Room temp 1 8741 Room setpoint 1 8742 Room model temperature 8743 Flow temp 1 8744 Flow temp setpoint 1 8747 Room thermostat 1 8760 Heat circ mix valv 2 open 8761 Heat circ mix valv 2 close 8770 Room temp 2 8771 Room setpoint 2 8772 Room model temperature 8773 Flow temp 2 8774 Room temp 2 8777 Room temp 3 8778 Room thermostat 2 8779 Room thermostat 2 8779 Room thermostat 3 8800 Room model temperature 8793 HC mixing valve 3 open 8794 HC mixing valve 3 closed 8800 <td>8700</td> <td>Outside temp</td>	8700	Outside temp
8703 Outside temp attenuated 8704 Outside temp composite 8730 Heating circuit pump 1 8731 Heat circ mix valv 1 open 8732 Heat circ mix valv 1 close 8740 Room temp 1 8741 Room setpoint 1 8742 Room model temperature 8743 Flow temp 1 8744 Room temp of 1 8745 Flow temp setpoint 1 8746 Room thermostat 1 8761 Heat circ mix valv 2 open 8762 Heat circ mix valv 2 close 8770 Room temp 2 8771 Room mel temperature 8772 Room model temperature 8773 Flow temp 2 8774 Room melot temperature 8773 Flow temp 2 8774 Room temp 3 8790 Heating circuit pump 3 8791 HC mixing valve 3 open 8792 HC mixing valve 3 closed 8800 Room temp 3 8801 Room setpoint 3 8802 <td>8701</td> <td>Outside temp min</td>	8701	Outside temp min
8704 Outside temp composite 8730 Heating circuit pump 1 8731 Heat circ mix valv 1 open 8732 Heat circ mix valv 1 close 8740 Room temp 1 8741 Room setpoint 1 8742 Room model temperature 8743 Flow temp 1 8744 Room thermostat 1 8760 Heat circ mix valv 2 open 8761 Heat circ mix valv 2 open 8762 Heat circ mix valv 2 close 8770 Room temp 2 8771 Room medel temperature 8772 Room model temperature 8773 Flow temp 2 8774 Room memp 2 8777 Room temp 2 8778 Room temp 2 8779 Room thermostat 2 8790 Heating circuit pump 3 8791 HC mixing valve 3 open 8792 HC mixing valve 3 closed 8800 Room temp 3 8801 Room setpoint 3 8802 Room thermostat 3 8803	8702	Outside temp max
8730Heating circuit pump 18731Heat circ mix valv 1 open8732Heat circ mix valv 1 close8740Room temp 18741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18747Room thermostat 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room setpoint 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28775Room temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805Room thermostat 38806Room thermostat 38807DHW temp 18838DHW temp 18836DHW temp 18835DHW circulation temp8836DHW charging temp8836DHW charging temp8835Instant WH setpoint8852DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK28895Flow temp setp	8703	Outside temp attenuated
8731Heat circ mix valv 1 open8732Heat circ mix valv 1 close8740Room temp 18741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp 28775Room model temperature8779Room model temperature8779Room model temperature8779Room model temperature8779Room model temperature8790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room temp 38803Flow temp 18830DHW temp 18831DHW temp 18832DHW temp 18833DHW temp 28835DHW circulation temp8836Flow temp setpoint8835Instant WH setpoint8852Flow temp setp VK18855Flow temp setp VK18855Flow temp setp vK28855Flow temp setp vK28855Flow temp setp vsimming pool8900Swimming pool temp	8704	Outside temp composite
8732Heat circ mix valv 1 close8740Room temp 18741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18745Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28775Room thermostat 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW pump8833DHW temp 18834DHW temp 18835DHW tirculation temp8836DHW charging temp8835DHW charging temp8836DHW charging temp8853Instant WH setpoint8855Flow temp setp VK18855Flow temp setp VK18855Flow temp setp swimming pool8900Swimming pool temp	8730	Heating circuit pump 1
8740Room temp 18741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28775Room thermostat 28779Room thermostat 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp 38805DHW pump8833DHW temp 18834DHW temp 18835DHW ticulation temp8836DHW temp 28835DHW circulation temp8836DHW charging temp8837Flow temp setpoint8838Flow temp setp VK18855Flow temp setp VK18855Flow temp setp VK28855Flow temp setp swimming pool8900Swimming pool temp	8731	Heat circ mix valv 1 open
8741Room setpoint 18742Room model temperature8743Flow temp 18744Flow temp setpoint 18744Flow temp setpoint 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp setpoint 28774Flow temp setpoint 28779Room thermostat 28779Room thermostat 28779Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38809Room thermostat 38820DHW pump8831DHW temp 18832DHW temp 28835DHW circulation temp8836DHW charging temp8837Instant WH setpoint8838Instant WH setpoint8835Flow temp setp VK18835Flow temp setp VK18835Flow temp setp VK18835Flow temp setp VK18836Flow temp setp vKn8837Rom setp vKn8838Flow temp setp vKn8839Swimming pool8900Swimming pool temp<	8732	Heat circ mix valv 1 close
8742 Room model temperature 8743 Flow temp 1 8744 Flow temp setpoint 1 8749 Room thermostat 1 8760 Heating circuit pump 2 8761 Heat circ mix valv 2 open 8762 Heat circ mix valv 2 close 8770 Room temp 2 8771 Room setpoint 2 8772 Room model temperature 8773 Flow temp 2 8774 Flow temp setpoint 2 8779 Room thermostat 2 8779 Room thermostat 2 8790 Heating circuit pump 3 8791 HC mixing valve 3 open 8792 HC mixing valve 3 closed 8800 Room model temperature 8801 Room setpoint 3 8802 Room model temperature 8803 Flow temp 3 8804 Flow temp 3 8805 Room thermostat 3 8806 Room thermostat 3 8807 Room thermostat 3 8810 DHW temp 2 8832 D	8740	Room temp 1
8743Flow temp 18744Flow temp setpoint 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room medel temperature8803Flow temp 38804Flow temp 38805Room model temperature8803Flow temp 38804Flow temp 18830DHW temp 18831DHW temp 18832DHW temp 28835DHW temp 28835DHW consumption temp8836Flow temp 28835Flow temp setpoint 88832DHW temp 18835DHW consumption temp8836Flow temp 28835DHW consumption temp8836Flow temp setp VK18837Flow temp setp VK18838Flow temp setp Swimming pool8900Swimming pool temp	8741	Room setpoint 1
8744Flow temp setpoint 18744Flow temp setpoint 18749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room model temperature8803Flow temp 38804Flow temp 38805Room model temperature8803Flow temp 38804Flow temp 38805DHW pump8830DHW temp 18831DHW temp 18832DHW temp 28835DHW clarging temp8836DHW clarging temp8837Flow temp setpoint 48838Flow temp setpoint 88839Sinstant WH setpoint8853Instant WH setpoint8853Flow temp setp VK18854Flow temp setp VK28855Flow temp setp swimming pool8900Swimming pool temp	8742	Room model temperature
8749Room thermostat 18760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room medel temperature8801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp 38805Room thermostat 38806Room thermostat 38807DHW temp 18838DHW temp 18831DHW temp 28835DHW temp 28836DHW circulation temp8837Flow temp setpoint8838Flow temp setpoint8835Flow temp setpoint8836DHW circulation temp8835DHW circulation temp8836Flow temp setp VK18837Flow temp setp VK28838Flow temp setp VK28839Flow temp setp vK28839Flow temp setp swimming pool8900Swimming pool temp	8743	Flow temp 1
8760Heating circuit pump 28761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room setpoint 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW temp 18831DHW temp 18832DHW temp 28835DHW temp 28835DHW consumption temp8836INW consumption temp8837Flow temp setp VK18838Flow temp setp VK28835Flow temp setp VK28835Flow temp setp VK28836Flow temp setp VK28837Flow temp setp VK28839Swimming pool temp	8744	Flow temp setpoint 1
8761Heat circ mix valv 2 open8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp 38805DHW temp 18831DHW temp 18832DHW temp 18835DHW circulation temp8836DHW consumption temp8837Flow temp setpoint8838Flow temp 28835DHW consumption temp8836Flow temp setp VK18837Flow temp setp VK18835Flow temp setp VK28835Flow temp setp VK28836Flow temp setp VK28837Flow temp setp VK28839Flow temp setp VK28830Swimming pool temp8900Swimming pool temp	8749	Room thermostat 1
8762Heat circ mix valv 2 close8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room setpoint 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW temp 18830DHW temp 18831DHW temp 28835DHW temp 28836DHW circulation temp8837DHW consumption temp8838Instant WH setpoint8853Instant WH setpoint8854Flow temp setp VK18855Flow temp setp VK28895Flow temp setp VK28895Flow temp setp Swimming pool8900Swimming pool temp	8760	Heating circuit pump 2
8770Room temp 28771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room setpoint 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW temp 18830DHW temp 18831DHW temp 28835DHW circulation temp8836DHW consumption temp8837Instant WH setpoint8853Instant WH setpoint8854Flow temp setp VK18855Flow temp setp VK28895Flow temp setp VK28895Flow temp setp Swimming pool8900Swimming pool temp	8761	Heat circ mix valv 2 open
8771Room setpoint 28772Room model temperature8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW pump8830DHW temp 18831DHW temp 18832DHW temp 28835DHW circulation temp8836DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK18885Flow temp setp VK18885Flow temp setp VK28890Swimming pool temp8900Swimming pool temp	8762	Heat circ mix valv 2 close
8772Room model temperature8773Flow temp 28774Flow temp setpoint 28777Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp 38805DHW temp setpoint 38806DHW temp 18831DHW temp 18832DHW temp 28835DHW circulation temp8836DHW charging temp8853Instant WH setpoint8854Flow temp setp VK18855Flow temp setp VK28895Flow temp setp VK28895Flow temp setp VK28890Swimming pool temp	8770	Room temp 2
8773Flow temp 28774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38805DHW temp setpoint 38820DHW pump8831DHW temp 18832DHW temp 28835DHW temp 28836DHW circulation temp8831DHW consumption temp8852DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK18855Flow temp setp VK28895Flow temp setp VK28890Swimming pool temp8900Swimming pool temp	8771	Room setpoint 2
8774Flow temp setpoint 28779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38809DHW temp 18831DHW temp 18832DHW temp 28835DHW circulation temp8836DHW consumption temp8852DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK18885Flow temp setp VK28895Flow temp setp Swimming pool8900Swimming pool temp	8772	Room model temperature
8779Room thermostat 28790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38800DHW pump8831DHW temp 18832DHW temp 28835DHW temp 28836DHW circulation temp8837DHW consumption temp8852DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8773	Flow temp 2
8790Heating circuit pump 38791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8831DHW temp 18832DHW temp 28835DHW temp 28836DHW temp 18837DHW temp 28838DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8855Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8774	Flow temp setpoint 2
8791HC mixing valve 3 open8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8831DHW temp 18832DHW temp 28835DHW temp 28836DHW temp 28837DHW consumption temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8779	Room thermostat 2
8792HC mixing valve 3 closed8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8831DHW temp 18832DHW temp setpoint8833BHW temp 28835DHW temp 28836DHW charging temp8852DHW charging temp8853Instant WH setpoint8855Flow temp setp VK18855Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8790	Heating circuit pump 3
8800Room temp 38801Room setpoint 38802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8831DHW temp 18832DHW temp setpoint8835DHW temp 28836DHW circulation temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8791	HC mixing valve 3 open
8801Room setpoint 38801Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8792	HC mixing valve 3 closed
8802Room model temperature8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8800	Room temp 3
8803Flow temp 38804Flow temp setpoint 38809Room thermostat 38820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8801	Room setpoint 3
8804Flow temp setpoint 38809Room thermostat 38820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8802	Room model temperature
8809Room thermostat 38820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8803	Flow temp 3
8820DHW pump8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8804	Flow temp setpoint 3
8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8809	Room thermostat 3
8830DHW temp 18831DHW temp setpoint8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8820	DHW pump
8832DHW temp 28835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8830	
8835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp	8831	DHW temp setpoint
8835DHW circulation temp8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		
8836DHW charging temp8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		· · · ·
8852DHW consumption temp8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		
8853Instant WH setpoint8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		
8875Flow temp setp VK18885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		
8885Flow temp setp VK28895Flow temp setp swimming pool8900Swimming pool temp		
8895 Flow temp setp swimming pool 8900 Swimming pool temp		
8900 Swimming pool temp		
8901 Swimming pool setpoint		Swimming pool setpoint

Line No.	Programming
8930	Primary controller temp
8931	Primary controller set
8950	Common flow temp
8951	Common flow temp setp
8952	Common return temp
8962	Common output setpoint
8980	Buffer temp 1
8981	Buffer setpoint
8982	Buffer temp 2
8983	Buffer temp 3
9009	Water pressure H3
9031	Relay output QX1
9032	Relay output QX2
9033	Relay output QX3
9034	Relay output QX4
9050	Relay output QX21 module 1
9051	Relay output QX22 module 1
9052	Relay output QX23 module 1
9053	Relay output QX21 module 2
9054	Relay output QX22 module 2
9055	Relay output QX23 module 2
9056	Relay output QX21 module 3
9057	Relay output QX22 module 3
9058	Relay output QX23 module 3
	Burner control
9500	Pre-ventilation time
9504	Required speed prepurging
9512	Required speed ignition
9524	Required speed LF
9525	Required speed LF min
9529	Required speed HF
9530	Required speed HF max
9626	Power slope/fan speed
9627	Section Y power/fan speed
9650	Chimney drying
9651	Req speed chimney drying
9652	Duration chimney drying

6. "USER INTERFACE" PARAMETERS

6.1. Setting the time

Line No.	Programming	Possible values
1	Hours / minutes	00:00 23:59
2	Day / month	01.01 31.12
3	Year	1900 2099
5	Start of summertime	01.01 31.12
6	End of summertime	01.01 31.12

The controller has an annual clock which indicates the hour, day and date. For correct operation of the programs, the hour and date must be correctly set on the clock.

N.B: Summer time / winter time switchover

The dates have been programmed for transition to the summer time and winter time. The time automatically goes from 2^{am} (winter time) to 3^{am} (summer time) or from 3am (summer time) to 2am winter time (on the first Sunday following the respective date.

6.2. User interface

Line No.	Programming	Possible values
20	Language	English Deutsch Français Italiano Nederlands Español
22	Info	Temporarily Permanently
26	Operation lock	Off On
27	Programming lock	Off On
28	Direct adjustment	Automatic storage Storage with confirmation
29	Units	°C, bar °F, PSI

Info (22):

• Temporary:

After pressing the "Info" key, the display returns to the "predefined" basic display after 8 minutes or by pressing the operating mode key.

• Continuous:

After pressing the "Info" key, the display goes to the standard "new" display after 8 minutes max. The last information selected is visible on the new basic display.

Operation lock (26):

If the operation lock is activated, the following control elements can no longer be set: Heating circuit mode, DHW mode, temperature setpoint, comfort ambient temperature (knob), occupation key.

Program lock (27):

If the program lock is activated, the setting values are displayed but cannot be modified.

Temporary suspension of program

The program lock can be temporarily deactivated on the program. To do so, simultaneously press the OK and ESC keys for at least 3 seconds. Temporary suspension of the program lock remains effective until the programming context is exited.

Permanent suspension of program

Start with a temporary suspension, then cancel the "Program lock" on line 27.

Direct setting (28):

Automatic

A setpoint correction using the knob is validated with no special confirmation (elapsed time) or by pressing the OK key.

With validation

A setpoint correction with the button will only be validated after the OK key has been pressed.

6.3. Heating circuit assignment

Line No.	Programming	Possible values
42	Assignment device 1	Heating circuit 1 Heating circuits
		1 and 2 Heating circuits 1 and 3
		All heating circuits
44	Operation HC2	Jointly with HC1 Independently
46	Operation HC3/P	Jointly with HC1 Independently

Assignment of unit 1 (42)

As room unit 1, the action generated by the corresponding user interface can be assigned to heating circuit 1 or to the two heating circuits. The latter case applies when the installation has 2 heating circuits and only one room unit

Control of heating circuit 2 (44)

Depending on the setting on line 40 (parameter accessible or QAA75 on QAA78: ambient temperature control module), the action (operating mode key or knob) can be defined on room unit 1, the user interface or the control component for heating circuit 2.

Common with HC1

Control of heating circuits 1 and 2 is shared.

Independent

The control action is displayed on the screen each time an operating mode key or knob is used.

Control of heating circuit (46)

Depending on the setting on line 40 (parameter accessible or QAA75 on QAA78: ambient temperature control module), the action (operating mode key or knob) can be defined on room unit 1, the user interface or the control component for heating circuit 3.

Common with HC1

Control of heating circuits 1 and 3 is shared.

Independent

Any change of operating mode or nominal temperature adjustment must be performed in the programming.

6.4. Software version

Line No.	Programming
70	Software version

The indication gives the current version of the user interface.

7. "HEATING CIRCUITS" PARAMETERS

The boiler controller can manage up to 3 heating circuits

The type of heating circuit (direct pump or mixed V3V) is self-defined in accordance with the connection (or not) of a flow temperature sensor.

Management of the heating circuit by the boiler controller (direct or mixed) requires use of an outdoor temperature sensor (QAC34 connected to B9, see section 2.3.2, page 13).

In order to have heating circuits with V3V, an extension module per heating circuit must be used.

The names of the sensors, pumps and valves used are:

	Sensor	Pump	V3V
HC1	B1	Q2	Y1/Y2
HC2	B12	Q6	Y5/Y6
HC3	B14	Q20	Y11/Y12

The following functions are available for each heating circuit independently:

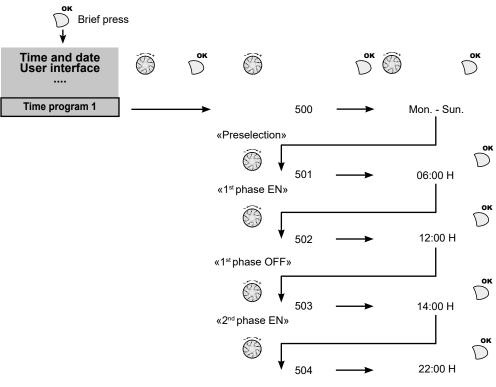
- · Adjustment of energy saving time schedules
- Adjustment of vacation programs
- · Adjustment of setpoints
- · Adjustment of heating curves
- Operation optimisation functions
- · Adjustment of control of V3V and pump actuators

7.1. Basic settings

7.1.1. Operating mode

Operation of heating circuits 1, 2 and 3 is directly controlled by the operating mode key (see chapter 3.3, page 17).

Line No.			Э.		Brogromming	Possible values
HC1	HC2	HC3	DHW	5	Programming	Possible values
500	520	540	560	600	Preselection	Mo-Su Mo-Fr Sa-Su MoSu
501	521	541	561	601	First period start time	00:00 24:00
502	522	542	562	602	First period stop time	00:00 24:00
503	523	543	563	603	Second period start time	00:00 24:00
504	524	544	564	604	Second period stop time	00:00 24:00
505	525	545	565	605	Second period start time	00:00 24:00
506	526	546	566	606	Second period stop time	00:00 24:00
516	536	556	576	616	Default values	No Yes


7.1.2. Time schedule program (heating circuits 1, 2 and 3, DHW, 5)

Several control programs are available for the heating and DHW production circuits. They are set up in « Automatic » mode and control the temperature level changes (and therefore the associated setpoints (reduced and comfort)) in accordance with the change times set.

Enter the change times:

The change times can be set in a combined way, i.e. identical times for several days or several different times for certain days. By preselecting groups of days (Monday ... Friday and Saturday ... Sunday, for example) with the same change times, you will considerably reduce the time spent in setting up the change program.

All the time schedule programs can be reset to the factory settings (lines 516, 536, 556, 576 and 616). Each time schedule program has its own control line for reinitialisation. In this case, the individual settings are lost.

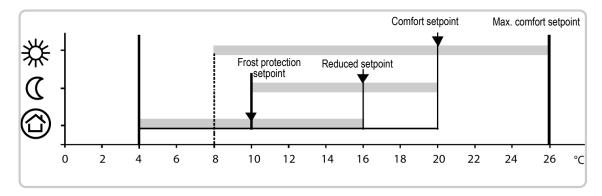
«2nd phase OFF»

7.1.3. Vacation (heating circuits 1, 2 and 3)

	Line No.		Brogramming	Possible values
HC1	HC2	HC3	Programming	POSSIBle values
641	651	661	Preselection	Period 1 Period 8
642	652	662	Begin (dd.mm)	01.01 31.12
643	653	663	End (dd.mm)	01.01 31.12
648	658	668	Operating level	Frost protection Reduced

The « vacation » program allows you to change the heating circuits on an operational level selected in accordance with the date (calendar).

The « vacation » program is active in automatic mode only.
When all the heating circuits configured are in holiday mode, the DHW circuit switches to frost protection mode.
When the holiday period is exceeded, it is deleted from the programming. The periods are to be programmed from one year to the next.


7.1.4. Setpoint values

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	Possible values
710	1010	1310	Comfort setpoint	4 35 °C
712	1012	1312	Reduced setpoint	4 35 °C
714	1014	1314	Frost protection setpoint	4 35 °C
716	1016	1316	Comfort setpoint max	4 35 °C

Ambient temperature:

The ambient temperature can be set according to different setpoint values. Depending on the mode chosen, the adjustment points are activated and provide different levels of ambient temperature.

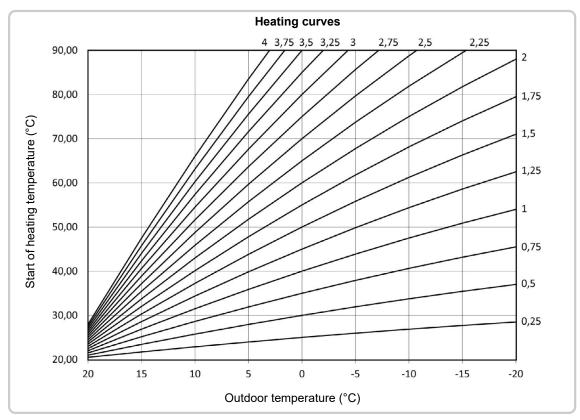
The configurable adjustment point ranges are defined by their interdependencies as shown in the chart below.

Frost protection :

The protection mode automatically prevents too sharp a drop in the ambient temperature. In this case, the control system adopts the frost protection adjustment point.

7.1.5. Heating curve

	Line No.		A	Programming	Possible values
HC1	HC2	HC3	Access	Programming	Possible values
720	1020	1320	E	Heating curve slope	0.10 4.00
721	1021	1321	S	Heating curve displacement	-4,5 4,5 °C
726	1026	1326	S	Heating curve adaptation	Off On


Heating curve slope

Depending on the heating characteristics, the controller will calculate the flow temperature setpoint which will be used to regulate the flow temperature in accordance with the atmospheric conditions. Different adjustments allow you to adapt the heating characteristic so that the heating capacity, and therefore the ambient temperature, corresponds to the individual needs.

The heating curve is adjusted with respect to an ambient temperature setpoint of 20°C. If the ambient temperature is changed, the flow temperature setpoint is automatically recalculated. This does not modify the adjustment and comes down to automatically adapting the curve.

Translation of heating curve.

Any offset of the curve will modify the flow temperature overall and regularly over the entire outdoor temperature range. In other words, the offset must be corrected when the ambient temperature is globally too high or too low.

Adaptation of heating curve

The adaptation allows the controller to automatically adapt the heating curve to the actual conditions. This correction function can only be activated and deactivated. In the latter case, there is no need to correct the slope and the offset.

To activate the function, the following conditions must be satisfied

- An ambient temperature sensor must be connected.
- The « ambient temperature influence » parameter must be set between 1 and 99.

- The reference room (where the ambient temperature sensor is installed) must not have a thermostatic valve. If it does, it must be completely open.

- Activation of this function requires an adaptation period which can take more or less time (around 1 week) depending on the weather conditions and the stability of the ambient temperature setpoint.

7.1.6. Flow temperature setpoint

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	Possible values
740	1040	1340	Flow temp setpoint min	8 95 °C
741	1041	1341	Flow temp setpoint max	8 95 °C

Limits the flow temperature setpoint (as min. or max.) calculated by the water law (heating curve).

7.1.7. Flow temperature setpoint of room thermostat

Line No.		Brogromming		Possible values
HC1	HC2	HC3	Programming	POSSIble values
742	1042	1342	Flow temp setpoint room stat	8 95 °C

If a room thermostat is defined on an input Hx, the flow setpoint for the heating circuit set will apply here.

IMPORTANT: No longer follows a water logic.

7.1.8. Delay heat request

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	r ussible values
746	1046	1346	Delay heat request	0 600 s

If a valve is used as a heating circuit control element (in place of a pump), the heat request sent to the generator may be delayed for the time taken by the valve to achieve the fully open position.

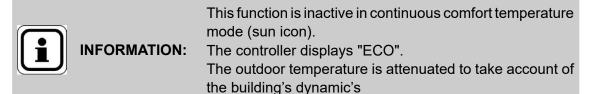
7.2. Optimisation

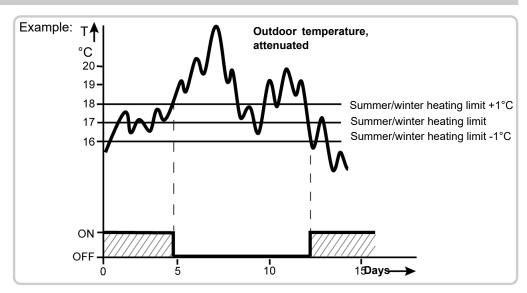
7.2.1. ECO functions

	Line No.			Programming	Possible values
	HC1	HC2	HC3	Programming	POSSIBle values
[730	1030	1330	Summer/winter heating limit	8 30 °C
	732	1032	1332	24-hour heating limit	-10 10 °C

Summer/winter switchover:

The summer/winter switchover activates/deactivates the heating system during the year in accordance with the temperature. The changeover takes place automatically when the automatic mode is selected, thus eliminating the need by the user to switch on/off the heating system. Any change to the input value shortens or extends the respective annual periods (summer/winter).




- If the value is increased:

The transition to winter mode is advanced, and the transition to summer mode is delayed.

- If the value is decreased:

The transition to winter mode is delayed and the transition to summer mode is advanced.

Daily heating limit :

The daily heating limit is used to switch on/off the heating system during the day depending on the outdoor temperature. This function is mainly used during the intermediate seasons (spring/autumn) to quickly respond to temperature deviations.

In this way, in the following example, the temperature is 18 °C, calculated as follows:

Heating comfort setpoint. (710) Heating limit over 24 hours (732) Switchover temperature (710 – 732) = Heating off	22 °C -3 °C 19 °C
Differential (fixed)	-1 °C
Switchover temperature =	18 °C

Heating on

Any change to the value entered will shorten or increase the respective heating periods.

- If the value is increased: the transition to heating mode will be advanced ; The transition to ECO mode will be delayed.
- If the value is decreased: the transition to heating mode will be delayed ; the transition to ECO mode will be advanced.

This function is inactive in continuous comfort temperature mode.

The controller displays "ECO".

The outdoor temperature is attenuated to take account of the building's dynamic's

7.2.2. Influence of ambient temperature

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	Possible values
750	1050	1350	Room influence	1 100 %

Types of control :

When an ambient temperature sensor is used, 3 different types of control are possible SETTING TYPE OF CONTROL

%	Simple control based on outdoor conditions *
199 %	Control based on outdoor conditions, with influence of ambient
	temperature *
100 %	Control based on ambient temperature only
	* Requires connection of an outdoor sensor.

Simple control based on outdoor conditions

The flow temperature is calculated by the heating curve in accordance with the average outdoor temperature

Since the control does not take account of the ambient temperature for this adjustment, this type of control requires correct adjustment of the heating curve.

Control based on outdoor conditions, with influence of ambient temperature.

The difference between the ambient temperature and the setpoint is measured and taken into account for adjustment of the temperature. This makes it possible to take account of possible heat inputs and ensures a better uniformity of the ambient temperature.

The influence of the temperature difference is defined in the form of a percentage. The configurable value will be proportionally higher and consistent with the quality of the installation in the reference room (precise ambient temperature, correct location of sensor, etc.).

Example:

60 % approx.: good quality installation 20 % approx.: poor quality installation

Control according to ambient temperature only

The flow temperature is adjusted in accordance with the ambient temperature setpoint, the actual ambient temperature and its evolution. For example, a minor increase in the ambient temperature will result in immediately lowering the flow temperature.

To activate the function, the following conditions must be satisfied

- An ambient temperature sensor must be connected.
- The "ambient temperature influence" parameter must be set between 1 and 99 or to 100%.
- The reference room (where the ambient temperature sensor is installed) must not have a thermostatic valve. If it does, it must be completely open.

7.2.3. Limitation of ambient temperature

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	Possible values
760	1060	1360	Room temp limitation	0,5 4 °C

The ambient temperature limitation function is used to switch off the circulating pump when the ambient temperature exceeds the current setpoint by more than the set differential. The circulating pump is again activated as soon as the ambient temperature drops below the current ambient temperature setpoint. If the ambient temperature limitation function is active, no heat request is transmitted to the generator(s).

7.2.4. Terminal regul heating limitation

	Line No.			Programming	Possible values
	HC1	HC2	HC3	Programming	Possible values
[761	1061	1361	Limite chauffe régul terminal	0 100 %

For simple ambiance regulation, the request is invalid if the current start setpoint request is lower than the limit set (x % of the maximum start setpoint - ambiance setpoint). The request is active again if the requested setpoint passes above the disconnection threshold by over 8%. This function may be activated/deactivated.

If an external probe is present, the daily heating limit and summer/winter switching functions may, where applicable, also deactivate the heating.

7.2.5. Accelerated heating

Line No.			Programming	Possible values
HC1	HC2	HC3	Programming	
770	1070	1370	Boost heating	0 20 °C

In fast heating mode, the new setpoint is reached more quickly when switching from the reduced setpoint to the comfort setpoint, thus shortening the temperature build-up time. During the fast heating operation, the room temperature setpoint is increased by the value set. An increase in the setting results in a shorter temperature build-up time. On the other hand, a decrease in the setting results in a longer period.

Fast heating is possible with or without the room temperature sensor.

7.2.6. Accelerated lowering of heating

Line No.			Programming	Possible values
HC1	HC2	HC3	Frogramming	rossible values
780	1080	1380	Quick setback	Off Down to reduced setpoint Down to frost prot setpoint

During accelerated lowering of the heating, the heating circuit pump is disconnected and, if a mixing valve type circuit is used, the mixing valve is closed.

The pump is operated in continuous mode to maintain the heating circuit pump activated during the accelerated temperature lowering operation.

Operation with room temperature sensor

With an ambient temperature sensor, the function disconnects the heating until the ambient temperature has dropped and reached the reduced setpoint or the frost protection level. When the ambient temperature has dropped down to the reduced or frost protection level, the heating circuit pump is activated and the mixing valve is released.

Operation without room temperature sensor

Accelerated lowering of the temperature cuts off the heating for a defined period of time in accordance with the outdoor temperature and the building time constant.

7.2.7. Optimisation on startup and stop

Line No.			Programming	Possible values
HC1	HC2	HC3	Programming	POSSIBle values
790	1090	1390	Optimum start control max	00:00 06:00
791	1091	1391	Optimum stop control max	00:00 06:00

Maximum optimisation on activation

The change of temperature levels is optimised to achieve the comfort setpoint during the changeover periods.

Maximum optimisation on cutout

The change of temperature levels is optimised to achieve the comfort setpoint - 1/4 °C during the changeover periods.

7.2.8. Increase of reduced setpoint

Line No.			Programming	Possible values
HC1	HC2	HC3	Programming	POSSIBle values
800	1100	1400	Reduced setp increase start	-30 10 °C
801	1101	1401	Reduced setp increase end	-30 10 °C

This function is mainly used in heating systems equipped with limited energy supply levels (homes with low energy profile, for example). In this case, when the outdoor temperatures are low, adjustment of the temperature would take too much time.

Increasing the reduced temperature setpoint prevents excess cooling of the rooms to shorten the temperature adjustment period on transition to the comfort setpoint.

7.2.9. Overtemperature protection

Line No.			Programming	Possible values
HC1	HC2	HC3	Programming	Possible values
820	1120	1420	Overtemp prot pump circuit	Off On

In heating installations with pump circuit, the heating circuit flow temperature may be higher than the flow temperature required by the heating curve subsequent to needs generated by other consumers (heating circuit with mixing valve, DHW load, external heat request) or to configuration of a minimum boiler temperature. By an excessively high outlet temperature, this heating circuit with pump would therefore be overheated. The overheating protection function for pump circuits is used to ensure, by activation or cutout of the pump, that the heating circuit energy supply corresponds to the heating curve demand.

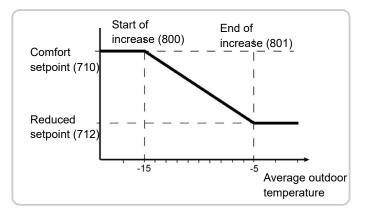
7.2.10. Mixing valve

	Line No.	_	Programming	Possible values
HC1	HC2	HC3		
835	1135	1435	Mixing valve Xp	1 100 °C

By using the servomotor's Xp proportional strip, the mixing valve's behaviour may be adapted to match the installation's behaviour (regulation loop). The mixing valve's proportional band influences the regulator's proportional behaviour.

Line No.			Programming	Possible values
HC1	HC2	HC3	Fiogramming	r ussible values
836	1136	1436	Mixing valve Tn	10 873 s

By using the Tn integration time, the mixing valve servomotor's behaviour may be adapted to match the installation's behaviour (regulation loop). The integration time influences the regulator's behaviour I.


7.2.11. Evacuation of excess heat

Line No.			Programming	Possible values
HC1	HC2	HC3	Programming	
861	1161	1461	Excess heat draw	Off Heating mode Always

The following functions can trigger evacuation of the surplus heat:

- Inputs Hx
- Adiabatic cooling of tank
- Evacuation of surplus heat from solid fuel boiler

If evacuation of surplus heat is activated, the surplus energy can be evacuated by the room heating system. This can be adjusted separately for each heating circuit.

Off

Evacuation of surplus heat deactivated.

Heating mode

Evacuation of surplus heat only takes place when the regulator is in heating mode.

Continuous

Evacuation of surplus heat takes place in all modes.

7.2.12. Storage tank / primary regulator

Line No.			Programming	Possible values
HC1	HC2	HC3	Frogramming	r ossible values
870	1170	1470	With buffer	No Yes

If a storage tank is used, it is necessary here to specify if the heating circuit is supplied from the storage tank. The temperature of the boiler storage tank serves as criterion for release of possible additional energy sources.

Line No.			Programming	Possible values
HC1	HC2	HC3	Frogramming	
872	1172	1472	With prim contr/system pump	No Yes

You can specify if the heating circuit is supplied from the primary regulator or by the primary pump (depending on installation).

7.2.13. Temperature level switchover

Line No.			Programming	Possible values
HC1	HC2	HC3	riogramming	
898	1198	1498	Operating level changeover	Frost protection Reduced
				Comfort

An external clock on input Hx is used to select the temperature level of the heating circuits.

7.2.14. Operating mode changeover

Line No.		lo. Programming	Possible values	
HC1	HC2	HC3	Frogramming	POSSIBle values
900	1200	1500	Optg mode changeover	None Protection Reduced Comfort Automatic

In the event of an external change by input H (on extension module only), the operating mode to which the change will be applied must be defined beforehand.

7.3. Control of actuators

7.3.1. Uninterrupted operation of pumps

	Line No.		Programming	Possible values
HC1	HC2	HC3	riogramming	r ossible values
809	1109	1409	Continuous pump operation	No Yes

The pump is operated in continuous mode to inhibit cutout of the pump during an accelerated temperature lowering operation and regulation to the room temperature setpoint (room temperature thermostat, room temperature sensor or room temperature model).

• Yes

The boiler heating circuit pump also remains activated during accelerated lowering of the temperature and when the room temperature setpoint has been achieved.

• No

The boiler heating circuit pump can be stopped during an accelerated temperature lowering operation or when the room temperature setpoint has been achieved.

7.3.2. Control by mixing valve

ACV

	Line No.		Programming	Possible values
HC1	HC2	HC3	Programming	POSSIBle values
830	1130	1430	Mixing valve boost	0 50 °C
832	1132	1432	Actuator type	2-position 3-position
833	1133	1433	TOR Switching differential	0 20 °C
834	1134	1434	Actuator running time	30 873 s

Heightening of the mixing valve

The controller adds the increase defined here to the current flow setpoint and uses the result as temperature setpoint for the heat generator.

Type of servomotor

The type of servomotor setting modifies the behaviour of the regulation on the mixing valve servomotor.

The regulator controls on/off and 3-point servomotors

On/Off Differential (TOR)

For the On/Off servomotor, the "On/Off Differential" parameter must be adapted if necessary. This is not necessary for the 3-point servomotor

Servomotor travel time

On a 3-way valve, the servomotor travel time can be adjusted. On a 2-way valve, it is not possible to adjust the servomotor travel time.

7.3.3. Speed-controlled pump

	Line No.		Brogramming	Possible values
HC1	HC2	HC3	Programming	POSSIBle values
881	1181	1481	Starting speed	0 100 %
882	1182	1482	Pump speed min	0 100 %
883	1183	1483	Pump speed max	0 100 %

The heating circulating pump start, minimum and maximum rotation speeds can be defined.

When a UX2 or UX3 output (0-10V) is used for a heating circuit pump, the previous parameters of the same heating circuit must be set with the same value.

	Line No.	_	Programming	Possible values
HC1	HC2	HC3	Frogramming	FOSSIBle Values
888	1188	1488	Curve readj at 50% speed	0 100 %

Correction of flow setpoint by reduction of pump rotation speed by 50%.

The correction is calculated as the difference between the flow setpoint according to the heating curve and the actual ambient temperature setpoint.

	Line No.		Programming	Possible values
HC1	HC2	HC3	Frogramming	FOSSIBle values
889	1189	1489	Filter time const speed ctrl	0 20 min

The time constant is adjusted here to filter the flow temperature. This filtered time delay is used to calculate the speed of the modulating pump.

Line No.			Programming	Possible values
HC1	HC2	HC3	Frogramming	r ossible values
890	1190	1490	Flow setp readj speed ctrl	No Yes

Here, you can specify if the calculated flow setpoint correction must be integrated in the temperature request or not.

7.4. Controlled slab drying

	Line No.		Brogromming	Dessible values
HC1	HC2	HC3	Programming	Possible values
850	1150	1450	Floor curing function	Off Functional heating Curing heating Functional/curing heating Curing/functional heating Manually
851	1151	1451	Floor curing setp manually	0 95 °C
855	1155	1455	Floor curing setp current	0 95 °C
856	1156	1456	Floor curing day current	0 32

This function is used for controlled drying of slabs. It adjusts the flow temperature to a temperature profile. Drying is performed by heating the slab through the heating circuit with a mixing valve or a pump.

The « current drying day » is displayed with parameter 855 (1155 or 1455).

« Controlled drying » function:

•None :

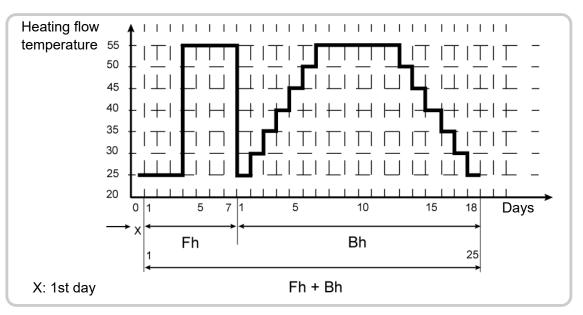
The function is deactivated.

• Functional heating (Fh):

The first part of the temperature profile is completed automatically.

• « Ready to occupy » heating (Bh):

The second part of the temperature profile is completed automatically.


- Functional heating / "ready to occupy" heating (Fh + Bh): The complete temperature profile (1st and 2nd part) is executed automatically.
- *« Ready to occupy » heating / functional heating (Bh + Fh):* The complete temperature profile (2nd part and 1st part) is executed automatically.
- •Manual:

No temperature profile is completed but the control is executed in accordance with the « manually controlled drying setpoint ». The function terminates automatically after 25 days.

• It is absolutely necessary to observe the standards and instructions of the building contractor !

- This function will only be active provided the installation has been properly done (hydraulic and electrical aspects, adjustments). Otherwise, the slabs to be dried could be damaged !
- The function can be interrupted prematurely by selecting « None ».
- The maximum flow temperature limitation remains active.

Manual drying setpoint

The flow temperature setpoint for the manual « controlled slab drying » function can be adjusted separately for each heating circuit.

Current drying setpoint

Displays the current flow temperature setpoint for the controlled slab drying function.

Current drying day

Displays the current day of the controlled slab drying function.

After a power cutout, the controlled drying function resumes at the moment where the power cutout took place.

8. "DOMESTIC HOT WATER" PARAMETERS

The boiler controller recognises that it must control a DHW circuit when a sensor or a thermostat is connected to its input B3.

The boiler controller can control a DHW actuator (DHW pump or valve Q3 to be defined at QX2).

The names of the sensor and the pump used are:

	Sensor	Pump
DHW	B3	Q3

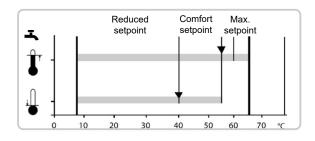
The following functions are available on the DHW circuit :

- · Adjustment of energy saving time schedules
- Adjustment of vacation programs
- · Adjustment of setpoints
- Anti-legionella function
- DHW storage tank with load management

The boiler controller shows the DHW menu and the DHW tank when a sensor or a thermostat is connected to input B3.

The control adjusts the DHW temperature to the desired setpoint in accordance with the energy saving time schedule or continuously. In this case, the priority can be given to the DHW load function on the heating circuits.

The controller has a configurable anti-legionella function designed to ensure protection against legionella in the tank and pipes. The circulating pump is controlled in accordance with the energy savings time schedule and the current operating mode.

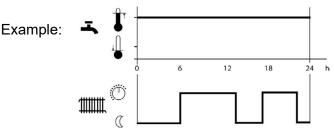

8.1. Basic settings

8.1.1. Setpoint value

Line No.	Programming	Possible values
1610	Nominal setpoint	8 80 °C
1612	Reduced setpoint	8 80 °C
1614	Nominal setpoint max	8 80 °C

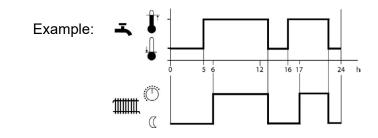
The DHW is heated to various setpoint values.

These setpoints depend on the operating mode selected and are used to achieve the desired temperatures in the DHW tank.

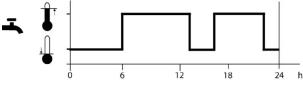

NAVISTEM B3000, Installation, Use and Maintenance Instructions

8.1.2. Release

Line No.	Programming	Possible values
1620	Release	24h/day Time programs HCs Time program 4/DHW


24h/24

Whatever the time schedule programs, the DHW temperature is maintained permanently to the nominal DHW setpoint.


Time schedule programs of heating circuits

Depending on the time schedule programs of the heating circuits, the DHW setpoint will vary between the comfort DHW setpoint and the reduced DHW setpoint. The first switching point of each phase advances by one hour each time.

Time schedule program 4/DHW

Time schedule program 4 of the local controller is taken into account for the DHW mode. The change between the comfort and reduced DHW setpoints takes place at the change times defined for this program. In this way, the DHW is loaded independently of the heating circuits.

8.1.3. Priority

Line No.	Programming	Possible values
1630	Charging priority	Absolute Shifting None MC shifting, PC absolute

If power is needed simultaneously for the heating and DHW circuits, the DHW priority function ensures that the boiler power is supplied with priority to the DHW during a DHW load cycle.

Absolute

The heating circuit with valve or pump is blocked until the DHW has achieved the desired temperature.

Sliding

If the heating power of the generator is not sufficient, the heating circuits with valve and with pump are restricted until the hot water has reached the desired temperature.

None

DHW charging takes place in parallel to operation of the heating system. If the sizing of the boilers and the heating circuits with valve is too tight, in the event of a high heating load, the DHW setpoint may not be achieved because there is too much heat passing into the heating circuit.

Sliding, absolute

The heating circuits with pump are cut off until the hot water has reached the desired temperature. If the heating power of the generator is insufficient, the heating circuits with mixing valves are restricted until the hot water has reached the desired temperature.

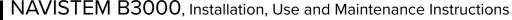
8.2. Anti-legionella function

Line No.	Programming	Possible values
1640	Legionella function	Off Périodically Fixed
		weekday

Periodic

The anti-legionella function is repeated in accordance with a defined frequency (line 1641).

• Fixed day in week


The anti-legionella function can be activated on a fixed day of the week (line 1642). With this setting, the heating at the anti-legionella setpoint takes place on a fixed day of the week without taking account of the DHW tank temperatures during the previous period.

During the period during which the anti-legionella function operates, there is a burn hazard when valves are opened.

Line No.	Programming	Possible values
1641	Legionella funct periodically	1 7

The periodic *anti-legionella function setting* determines the number of the days after which the anti-legionella function must be reactivated (this adjustment only works provided the *anti-legionella function* is set to Periodic).

Line No.	Programming	Possible values
1642	Legionella funct weekday	Monday Tuesday Wenesday Thursday Friday Saturday Sunday
1644	Legionella funct time	00:00 23:50 h:m

The day-of-the-week anti-legionella operating parameter defines on which day the antilegionella function must be activated. The anti-legionella function is then executed on the concerned day, whether a renewable energy is available or not.

The anti-legionella function is started up at the time which has been set. The DHW setpoint is raised to the anti-legionella setpoint which has been set, and DHW charging begins.

If no time parameter has been set, the anti-legionella function is started on the day corresponding to the first normal charging of the DHW. If no DHW load is planned on that day (continuous reduced mode), the anti-legionella function is executed at 24.00.

If DHW production is deactivated (DHW mode key = Off or Vacation), the anti-legionella function resumes as soon as it is reactivated (DHW mode key = On or end of leave).

Line No	Programming	Possible values
1645	Legionella funct setpoint	55 95°C

The higher the temperature in the tank, the shorter the duration of the anti-legionella function.

Line No.	Programming	Possible values	
1646	Legionella funct duration	10 360 min	

The anti-legionella setpoint must not be interrupted during the set holding time . If the tank temperature measured (by the coldest sensor, when two sensors are used) is greater than the anti-legionella setpoint less 1 K, the anti-legionella function is considered to be accomplished and the *holding time* begins.

If the tank temperature measured before the end of the *holding time* is less by more than a differential of + 2 K with respect to the anti-legionella setpoint, the holding time must be renewed. If no setpoint holding time is set, the anti-legionella function is considered to be accomplished as soon as the anti-legionella setpoint is achieved.

Line No.	Programming	Possible values	
1647	Legionella funct circ pump	Off On	

The loop pump Q4 can be activated during the anti-legionella function.

8.3. Loop pump Q4

The pump is controlled by a multifunction relay configured accordingly.

Line No.	Programming	Possible values
1660	Circulating pump release	Time program 3 / HCP DHW
		release Time program 4 / DHW
		Time program 5

The "DHW release" setting starts up the loop pump when DHW production is released.

Line No.	Programming	Possible values	
1661	Circulating pump cycling	Off On	

To limit losses during circulation, the pump can be controlled for on/off.

If the function is activated, the loop pump is activated steady for 10 minutes during the release period and disconnected again for 20 minutes.

If the pump is activated as part of an anti-legionella cycle, it is no longer controlled cyclically. If the function is deactivated, the pump remains activated continuously during the release period.

This logic implies zero flow in the sanitary loop circuit. Please refer to the regulations in force to validate the obligation or not to maintain a constant minimum traffic speed.

Line No.	Programming	Possible values	
1663	Circulation setpoint	8 80 °C	

If a sensor is installed in the DHW distribution line, the regulator monitors the temperature measured during execution of the anti-legionella function. The setpoint set must be maintained on the sensor throughout the duration *of the anti-legionella function* programmed. Adjustment of the maximum circulation value is limited to the nominal setpoint.

8.4. Mode switching

Line No.	Programming	Possible values	
1680	Optg mode changeover	None Off On	

In the event of external switching by input Hx, it is necessary to first define the mode to which the switchover will take place.

9. "CONSUMER CIRCUITS" PARAMETERS

The boiler controller can respond to external consumer requests.

The external consumers send their temperature request either by a 0...10 V signal configured at input H1, or by a dry contact (on H1) and a predefined setpoint configured in the boiler controller.

To display the consumer circuit menu in the program, you must first configure input H1 with one of the 2 functions described below.

The consumer circuit pumps can be controlled by defining a boiler controller output (QX2 to be defined in Q15).

A pool circuit is considered as an external consumer. The pool menu and the associated functions appear on the program when an input BX is declared as pool sensor (B13) and the sensor is connected. You can also define a pool pump (Q19).

9.1. Outlet setpoint

Line No.			Programming	Possible values
VK1	VK2	VK3	Frogramming	rossible values
1859	1909	1959	Flow temp setp cons request	8 120 °C

Here, you set the outlet setpoint to be taken into account in the event of a consumer circuit request.

Line No.			Programming	Possible values
VK1	VK2	VK3	Programming	POSSIBle values
1874	1924	1974	DHW load priority	Yes / No

9.2. Override signal / blocking signal

Line No.			Programming	Possible values
VK1	VK2	VK3	Programming	POSSIBle values
1875	1925	1975	Excess heat draw	Off On

If evacuation of the surplus heat is activated, the surplus of energy can be evacuated by consumer take-off. This can be adjusted separately for each consumer circuit.

9.3. Storage tank / primary regulator

	Line No.		Programming	Possible values
VK1	VK2	VK3	Frogramming	rossible values
1878	1928	1978	With buffer	No Yes

If a storage tank is used, you must specify here if the consumer circuit can be supplied from the storage tank. The boiler storage tank temperature serves as criterion for possible release of additional alternative sources of energy.

Line No.			Programming	Possible values
VK1	VK2	VK3	Programming	rossible values
1880	1930	1980	With prim contr/system pump	No Yes

You can specify if the consumer circuit is supplied from the primary regulator or by the primary pump (depending on installation).

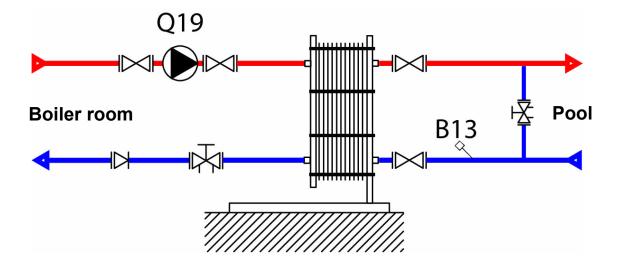
10. "POOL" PARAMETERS

Access to the pool function parameters is only possible when a consumer circuit is declared as pool circuit.

N° ligne	Programmation	Valeurs possibles
1959	Pool circuit generator set point	8 80 °C

When there is a heat request from the swimming pool circuit, the generator takes 1959 as the set point.

10.1. Heating setpoint


Line No.	Programming	Possible values
2055	Setpoint solar heating	8 80 °C
2070	Maximum pool temperature	para 205595 °C

Pool locker

When using heat source heating, the pool is heated to this setpoint.

Recommendation

It is recommended to set the lowest setpoint temperature that still provides adequate comfort. This avoids unnecessary energy consumption by the main heat source.

11. PRIMARY REGULATOR / PUMP

Line No.	Programming	Possible values
2110	Minimum flow setpoint T°	8 °C para 2111
2111	Minimum flow setpoint T°	para 2110 95 °C

These limitations make it possible to define a range for the heating flow setpoint.

Line No.	Programming	Possible values
2130	Mixing valve elevation	050 °C

For mixing, the actual boiler flow temperature must be higher than the flow setpoint of the mixing valve. Otherwise, the latter cannot be reached at the desired time. The controller forms the boiler setpoint from the boost set here and the current flow setpoint.

Line No.	Programming	Possible values
2150	Primary regulator/pump	Upstream storage tank I
		Downstream storage tank

If the installation includes a storage tank, you can indicate here whether the primary regulator or the primary pump are placed upstream or downstream of it.

NAVISTEM B3000, Installation, Use and Maintenance Instructions

12. "BOILERS" PARAMETERS

The boiler receives heat requests and regulates its output according to need.

It is possible to use optimization functions to limit the number of cycles.

The boiler controller is the regulator that calculates the boiler's flow setpoint according to the different heat demands. These requests can come from several requesters:

- · Heating circuits controlled by the boiler controller
- DHW circuit controlled by the boiler controller
- Request for consumers not controlled by the boiler controller via an On/Off contact or a 0...10 volt signal.
- External request on LPB bus

The boiler has a suitable factory setting. Parameter changes must be made with caution to meet specific application cases.

12.1. Operating mode

Line No.	Programming	Possible values
2203	Release under outside T°	-50 50 °C

The boiler is only put into operation if the temperature is below the parameter value.

Line No.	Programming	Possible values
2208	Full stock tank charge	Stop walking

To obtain sufficient operating times, the boiler remains in operation until the storage tank is fully charged.

12.2. Operating limits

12.2.1. Min. and max. setpoints

Line No.	Programming	Possible values
2210	Setpoint min	See boiler manual
2212	Setpoint max	See boiler manual

The boiler temperature setpoint which has been set can be limited by a minimum setpoint and a maximum setpoint.

These limitations will present a protection function for the boiler. Depending on the boiler mode, the minimum limitation on the boiler temperature setpoint in normal mode is the lower threshold of the boiler setpoint configured. In normal mode, the maximum boiler temperature limitation is the upper limit for the boiler setpoint which has been set and the setpoint for the electronic safety limiting thermostat.

The minimum and maximum setpoint adjustment range is limited by the manual mode setpoint.

12.2.2. Manual mode

Line No.	Programming	Possible values
2214	Setpoint manual control	(setpoint min) (setpoint max)

In manual mode, the common starting setpoint can be adjusted to a fixed value.

12.2.3. Frost protection setpoint

Line No.	Programming	Possible values
2217	Setpoint frost protection	-20 20 °C

Frost protection of the boiler is ensured independently of the heat requests or of the components connected. This function initiates, as may be necessary, activation of the burner. In this case, the consumer circuits are switched in order to take the heat generated.

12.2.4. Minimum return setpoint

Line No.	Programming	Possible values
2270	Return setpoint min	See boiler manual

The minimum return setpoint is configurable. If the boiler return temperature is below the return setpoint, the return temperature holding function is activated.

12.3. Optimisation

12.3.1. Burner control

Line No.	Programming	Possible values
2243	Burner off time min	0 20 min

The minimum pause time of the boiler acts exclusively between the successive heat requests. The boiler is then blocked for an adjustable duration. This time is activated subsequent to regular shutdowns or activation of the safety thermostat following heat requests. The system startups requested by the on/off regulator subsequent to heating requests are only taken into account after expiry of this time period.

12.3.2. Timing of pumps

Line No.	Programming	Possible values
2250	Pump overrun time	0 240 min

Timed stopping of pumps following an external heating request.

Line No.	Programming	Possible values
2253	Pump overr time after DHW	0 20 min

Timed stopping of pumps after DHW

12.3.3. Burner startup time delay

Line No.	Programming	Possible values
2470	Delay heat req special op	0 600 s

The time delay is used to defer startup of the burner when an actuator with a slow opening time is used.

12.3.4. Boiler pump speeds

Line No.	Programming	Possible values
2321	Starting speed	0 100 %
2322	Pump speed min	0 100 %
2323	Pump speed max	0 100 %

These parameters are used to set the minimum and maximum boiler pump speeds on start-up.

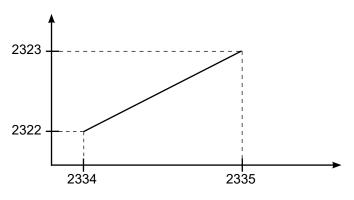
When a UX2 or UX3 output (0-10V) is used for a boiler pump, parameters 2321, 2322 and 2323 must be set with the same value.

Line No.	Programming	Possible values
2324	Xp pump speed	1200 °C
2325	Tn rotational speed	10873 s
2326	Tv rotational speed	030 s

These parameters are the PID settings that govern the boiler pump Q1.

N° ligne	Programmation	Valeurs possibles
2334	Power to live. Minimum pump	0 100 %
2335	Puiss. à vit. Max pompe	0 100 %

The 0-10V output signal will be equivalent to *Pump speed min* (Q1) (2322) for a burner power equivalent to *Output at pump speed min* (2334).


The 0-10V output signal will be equivalent to *Pump speed max* (Q1) (2323) for a burner power equivalent to *Output at pump speed max* (2335).

Powers 2334 and 2335 are expressed in % in relation to the nominal power of the boiler.

Do not rely on the fan control scale visible on the HMI which goes from 0% to 100%, 0% meaning minimum power of the model and 100% the maximum power of this model.

If the burner power is between these two values, the 0-10V output signal is extrapolated in a linear way.

12.3.5. Rate monitoring

Line No.	Programming	Possible values
2503	Parameter	0 60 s

This parameter corresponds to the filtering time for information on the boiler pump's status on start-up. When this time expires, if the rate is insufficient the boiler is set to fault E164.

12.3.6. Boiler power

These settings are required for cascade connection of boilers which do not have the same power levels.

Line No.	Programming	Possible values
2330	Output nominal	0 2000 kW
2331	Output basic stage	0 2000 kW

These parameters do not impact the power of the generator and therefore do not allow it to be clamped.

12.4. Regulation of heating and DHW

12.4.1. Fan

Line No.	Programming	Possible values
2441	Fan speed heating max	0 10000 tr/min

This parameter is used to limit the maximum power in heating mode.

Line No.	Programming	Possible values
2442	Fan speed full charging max	0 10000 tr/min

This parameter is used to limit the maximum power in complete load mode.

Line No.	Programming	Possible values
2444	Fan speed DHW max	0 10000 tr/min

This parameter is used to limit the maximum speed of the fan for the DHW mode. It is compatible with shutdown (HS). In the event of shutdown, the fan is controlled at its maximum speed in DHW mode.

Line No.	Programming	Possible values
2450	Regulator delay	OffIHeatingmodeonlyIDHWmode
		only I Heating and DHW mode

Here you can determine the speed for which the controller delay is active.

Stop

The function is inoperative.

Only heating mode

The regulator time delay only acts in DHW mode.

Heatind and DHW mode

The controller delay is effective in heating and DHW mode.

Line No.	Programming	Possible values
2452	Regulator speed delay	para 9525para 9530

Speed commanded for the duration of the governor delay.

12.4.2. Differentials

To avoid accidental cutouts during a transient phenomenon, the cutout differential is dynamically adjusted in accordance with the temperature curve. In principle, the cutout differential is reduced in accordance with the amplitude of the ringing during a transient phenomenon. In the event of non-periodic phenomena, the reduction is carried out on a time-based criterion.

Line No.		Programming	Possible values
HC	DHW	Programming	POSSIBle values
2454	2460	Switching diff on HCs	0 20 °C

The activation threshold is calculated on the basis of the setpoint requested less the activation differential. The current parameter designates the activation differential applied in the event of a heating or DHW request.

Line No.		Programming	Possible values
HC	DHW	Frogramming	POSSIBle values
2455	2461	Switching diff off min HCs	0 20 °C

The cutout threshold is calculated on the basis of the setpoint requested increased by the cutout differential. The current parameter designates the cutout differential applied in the event of a heating or DHW request.

During the transient period, the cutout differential can fluctuate between the minimum and maximum value. After the transient period has elapsed, it is always the minimum cutout differential which is used.

Line No.		Programming	Possible values
HC	DHW	Frogramming	rossible values
2456	2462	Switching diff off max HCs	0 20 °C

The cutout threshold is calculated on the basis of the setpoint requested increased by the cutout differential. The current parameter designates the cutout differential applied in the event of a heating or DHW request.

The maximum cutout differential is only used during the transient period.

Line No.		Brogramming	Possible values
HC	DHW	Programming	rossible values
2457	2463	Settling time HCs	0 240 min

This parameter defines the time during which, following initiation of the burner, the cutout threshold can be calculated using the maximum cutout differential.

This parameter applies to heating and DHW requests.

Line No.	Programming	Possible values
2550	Gas energy metering	Off I On

Line No.	Programming	Possible values
2551	Gas meter correction	0.71.3

The Gas metering correction parameter (2551) allows the specialist to apply a factor to the current burner power value determined by the function linear approximation. A value of 1.000 means no changes are made to the function configured approximation. A low value leads to a low gas energy count and a high value leads to a higher gas energy count.

Line No.	Programming	Possible values
2630	Smoke damper stop delay	Off I On

The flue gas damper control reacts to the fan control. If the fan is no longer controlled, the smoke damper closes. To be able to cover brief shutdowns and transitions to post-ventilation or chimney drying, the smoke damper is switched off with a certain delay. This parameter is used to set the duration of the power-off delay.

11.4.3. Drain function

Line No.	Programming	Possible values
2630	Auto deaeration procedure	Off On

This function must be released by this parameter (Start) to be able to start.

Off

This function is non-operational.

On

The function is activated.

Line No.	Programming	Possible values
2655	ON time deaeration	0 240 s

Activation time (T_ON, see graph page 19) for the boiler pumps / heating circuits in drain function phase 2 and phase 4.

Line No.	Programming	Possible values
2656	OFF time deaeration	0 240 s

Disconnection time (T_OFF, see graph page 19) for the boiler pumps / heating circuits in drain function phase 2 and phase 4.

Line No.	Programming	Possible values
2657	Number of repetitions	0 100

Number of pump switching cycle repetitions (T_ON, T_OFF) in drain function phase 2 and 4.

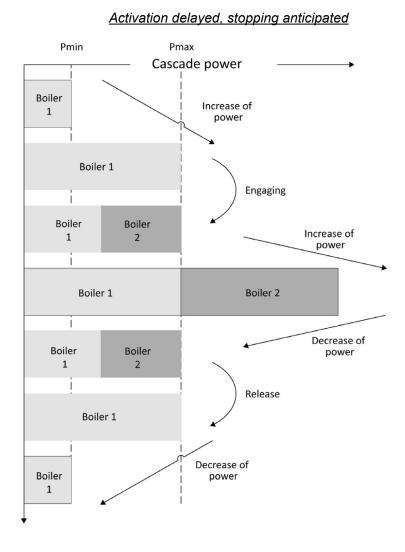
Line No.	Programming	Possible values
2662	Deaeration time heat circuit	0 255 min

Drain duration with continuous boiler pump / heating circuit command in drain function phase 1.

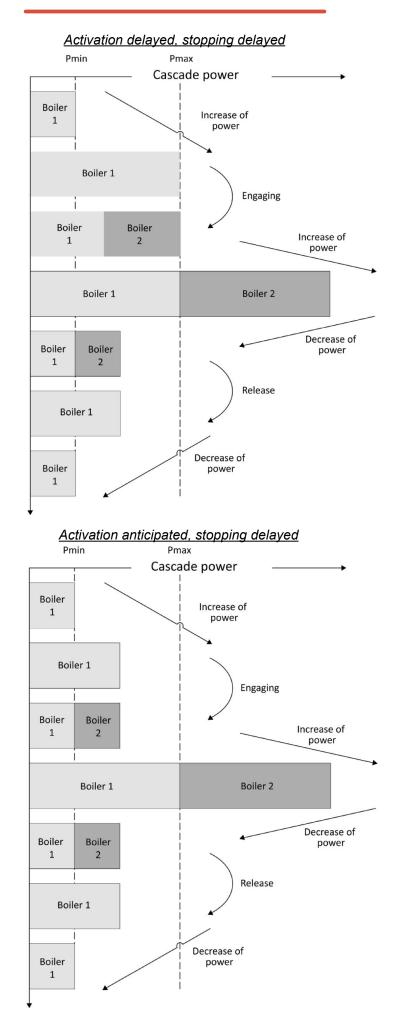
Line No.	Programming	Possible values
2663	Deaeration time DHW	0 255 min

Drain duration with continuous boiler pump / DHW command in drain function phase 3.

13. "CASCADE" PARAMETERS


For a cascade, a network must be created on the LPB bus (with OCI345) comprising at least two boilers.

The NAVISTEM B3000 can be master or slave on the bus. The cascade can comprise an NAVISTEM B3000, LMU and RVS.


The bus always has a master (address 1) and one or several slaves defined with different addresses (addresses from 2 to 16)

A cascade flow temperature sensor on an input Bx (configured as common flow sensor b10) must be configured on the cascade master. A cascade return sensor B70 can be configured for certain applications.

Select a cascade strategy :

Adjust the power ranges to control the switchovers in the cascade strategies described above. The ranges are common to all the boiler switchovers, these ranges must therefore be adjusted in accordance with the type of boiler in the cascade.

Depending on the energy performance level of the boilers forming the cascade, priorities should be given. Use the boiler providing the highest efficiency (example, VARMAX) most often and use the least efficient boiler as little as possible or as backup (example, pressurised boiler).

13.1. Operating mode

Line No.	Programming	Possible values
3510	Lead strategy	Late on, early off Late on, late
		off Early on, late off
3511	Output band min	0 100 %
3512	Output band max	0 100 %

Keeping in mind the recommended power range, the generators are activated or deactivated in accordance with the cascade control strategy set.

To deactivate the power range action, set the limit values to 0% and 100% and the control strategy to delayed activation, delayed stop.

13.2. Regulation

Line No.	Programming	Possible values
3530	Release integral source seq	0 500 °Cmin

When the energy request exceeds the release integral amount set here, a second boiler is activated. By increasing the value of the parameter, activation of the additional generators is slowed down. By decreasing the value of the parameter, activation of the additional generators is accelerated.

L	_ine No.	Programming	Possible values
	3531	Reset integral source seq	0 500 °Cmin

If a heat generator currently in service exceeds the energy requirement of the cutout integral set here, the generator with the highest priority is cut off. By increasing this value, the generators stay activated longer (in the event of surplus heat). By decreasing the value of the parameter, stopping of the generators is accelerated.

Line No.	Programming	Possible values
3532	Restart lock	0 1800 s
3533	Switch on delay	0 120 min

Reactivation lock

The reactivation time delay prevents newly starting a boiler which has just been stopped. It is only at the end of this set time delay that it is again released. This prevents over-frequent starting and stopping of the generators while ensuring stable operation of the installation.

Heating mode switch-on delay

Correct adjustment of the time delay ensures stable operation of the installation. It prevents over-frequent starting and stopping of the generators.

For the DHW demand, the timeout is defined for 1 min.

Line No.	Programming	Possible values
3534	Forced time basic stage	0 1200 s

Each boiler is then activated at the basic rate during the time defined. It is only at the end of this period that the next rate is released.

Line no.	Programming	Possible values
3535	Switch-on delay DHW	0 120 min

This setting is used to configure the timeout before starting additional boilers in a cascade layout when the demand for hot water increases.

Note: if the generator is in simultaneous production of heating and DHW and DHW is not absolute priority, the switch-on delay considered is the shortest between 3533 and 3535.

13.3. Boiler sequence

Line No.	Programming	Possible values
3540	Auto source seq ch'over	10 990 h

The boiler sequence is automatically switched to manage the load of the boilers forming a cascade by defining the order of the control boiler and the backup boilers.

Fixed order

The - - - setting defines a fixed switching order. The control boiler can be defined at line 3544; the other boilers are activated in the order consistent with their LPB device addresses.

Switching order according to operating time

At the end of the hours configured, the order of the boilers forming the cascade is inverted. The boiler with the next higher address takes charge of the main boiler function.

Line No.	Programming	Possible values
3541	Auto source seq exclusion	none first last first and last

The exclusion setting can only be used in association with the sequence activated at line 3540.

Boiler exclusion is used so that neither the first and/or the last boiler is used when the automatic switchover takes place.

None

The order of activation of the boilers is inverted at the end of the hours configured (line 3540).

First

The boiler with the lowest address continues to be the main boiler. The following ones switch their activation order after the number of hours specified in line 3540.

Last

The boiler with the highest address (last address) is always the last in the sequence. For the other boilers, the order of activation is inverted after the configured hours have elapsed (line 3540).

First and last

The boiler with the lowest address (first address) continues to be the main boiler. The boiler with the highest address (last address) is always the last in the sequence. The boilers with the intermediate addresses are switched over following the number of hours set (line 3540).

Line No.	Programming	Possible values
3544	Leading source	source 1 source 16

The main boiler setting is only used in association with the fixed order of the boiler sequence on line 3540.

The main boiler defined will always be activated first and deactivated last. The other boilers are switched in the order of their device addresses.

13.4. Return temperature min. limitation.

Line No.	Programming	Possible values
3560	Return setpoint min	8 95 °C

As soon as the return temperature exceeds the return setpoint adjusted, the return temperature holding function is activated. The return temperature holding function is used to influence the consumers or to use a return regulator.

Line No.	Programming	Possible values
3562	Return influence consumers	Off On

If the return temperature of the released boiler cascade drops below the minimum temperature set, the regulator calculates a blocking signal.

If this signal is greater than the corresponding limit value, the consumer pumps are or remain stopped in the pump circuits (circulating pump, DHW pump, external charging). In those circuits with mixing valve, the flow setpoint is reduced in accordance with the value of the blocking signal.

14. "DHW TANK" PARAMETERS

14.1. Load regulation

Line No.	Programming	Possible values
5020	Flow setpoint boost	0 30 °C

The DHW request to the generator comprises the current DHW setpoint and the adjustable boost.

Line No.	Programming	Possible values
5021	Transfer boost	0 30 °C

The transfer is used to route the buffer tank energy to the DHW tank. In this respect, the current temperature of the buffer tank must be greater than the current temperature in the DHW tank. This differential can be set here.

Line No.	Programming	Possible values
5022	Type of charging	Recharging Full charging Full charging legio Full charg 1st time day Full charg 1st time legio

The tank can be loaded with up to two sensors max. A partial load can also be combined using a sensor and an anti-legionella function based on 2 sensors (setting 3).

Recharging

The DHW request is controlled by sensor B3.

Complete load

The DHW request is controlled by the two tank sensors B3 and B31.

Anti-legionella complete load

If the anti-legionella function is active, the DHW request is controlled by the two tank sensors B3 and B31, otherwise by sensor B3.

Complete load, first of the day

On the first daily load, the DHW request is controlled by the two tank sensors B3 and B31; the following charging operations by sensor B3 only.

Complete load, anti-legionella + 1st of the day

On the first daily load, and when the anti-legionella function is active, the DHW request is controlled by the two tank sensors B3 and B31; in the other cases, by sensor B3 only.

14.2. Charging time limitation

Line No.	Programming	Possible values
5030	Charging time limitation	10 / 600 min

During charging, the ambiance heating (depending on the hydraulic circuit's DHW charge priority (1630)) may not receive enough energy. It may therefore be a good idea to limit the charging over time.

If the function is activated, the DHW is interrupted until the configured time expires then restarts. While the charging is interrupted, the energy produced by the generator is available for the ambiance heating.

When the ambiance heating is stopped (summer mode, economy function, etc.), the DHW charging remains active, independently of the setting.

14.3. Discharge protection

Line no.	Programming	Possible values
5040	Discharging protection	Off Always Automatically

This function ensures that the hot water pump (Q3) is only started when the boiler temperature is hot enough.

If the hot water tank has a sensor:

The charging pump is only started if the generator temperature exceeds the temperature of the hot water increased by half of the increase in the charge. If during charging, the boiler temperature again falls below the temperature of the hot water increased by 1/8th of the increase in the charge, the charging pump is stopped. If two sensors have been configured for hot water charging, then the lowest temperature is taken into account by the discharge protection function (hot water sensor B31).

If the hot water tank has a thermostat:

Note that even in this case, it is essential to define a hot water setting from the "Hot water" menu.

The charging pump is only started if the boiler temperature is above the nominal hot water setting. If during charging, the boiler temperature again falls below the nominal hot water setting reduced by the hot water differential, then the charging pump is started once again.

Off

Thi function is non-operational.

Always

This function operates full time.

Automatically

This function only operates if the boiler cannot provide heat or no longer operates (failure, locking).

After charging, once the hot water setting is reached, the timed pump shutdown starts. If the boiler temperature or the common start temperature falls below the temperature in the hot water tank during the timeout, the timed pump shutdown is stopped. If there are two hot water sensors, then the one that measures the highest temperature is taken into account (sensor B3).

14.4. DHW tank frost protection

If the temperature drops below 5 °C, the boiler is activated to bring the temperature up to 10 °C.

14.5. Adiabatic cooling

Line No.	Programming	Possible values
5055	Recooling temp	8 95 °C
5056	Recooling heat gen/HCs	Off On

There are two functions for adiabatic cooling of the DHW tank.

An adiabatic cooling function remains active so long as the tank has not reached the adiabatic cooling temperature.

The energy can be discharged in the heating circuits or be transferred to the surroundings by the manifold surface when it is cold.

14.6. Electrical resistor

Line No.	Programming	Possible values
5060	El imm heater optg mode	Substitute Summer Always
5061	El immersion heater release	24h/day DHW release Time program 4/DHW
5062	El immersion heater control	External thermostat DHW
		sensor

INFORMATION:Effective release only occurs when the electrical resistor
can operate consistently with the *"Electrical resistor"*
mode setting (5060).For the setpoint value compensation to operate correctly,
the thermostat external to the regulator must be set to the
maximum tank temperature.

14.7. Evacuation of excess heat

Line No.	Programming	Possible values
5085	Excess heat draw	Off On

The following functions can trigger evacuation of the surplus heat :

- Inputs H1, H2, H3 or EX2
- Adiabatic cooling of tank
- Evacuation of surplus heat from solid fuel boiler

If evacuation of surplus heat is activated, the surplus energy can be evacuated by the room heating system. This can be adjusted separately for each heating circuit.

14.8. Installation hydraulic system

Line No.	Programming	Possible values
5090	With buffer	No Yes

If a buffer tank is used, you must specify here if the DHW tank is supplied from the buffer tank. The boiler buffer tank temperature serves as criterion for release of the additional energy sources when these are taken into account.

Line No.	Programming	Possible values
5092	With prim contr/system pump	No Yes

You can specify if the DHW tank is supplied from the pre-regulator or with the network pump (depending on installation).

14.9. DHW pump speed-commanded

Line No.	Programming	Possible values
5101	Pump speed min	0 100 %
5102	Pump speed max	0 100 %

The range of speeds for control of the charging pump is limited by the minimum and maximum speeds authorised. To ensure correct operation of the pump, the speed is taken to its maximum for 10 seconds when the pump is started up.

Line No.	Programming	Possible values
5108	Starting speed charg pump	0 100 %

This parameter is used to set the rotation speed on start-up (for 10 seconds) for the DHW pump.

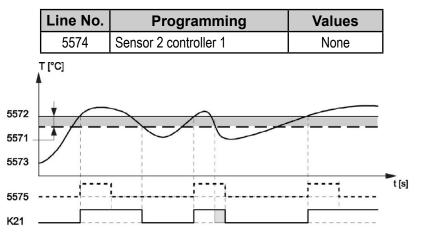
When a UX2 or UX3 output (0-10V) is used for a DHW pump, parameters 5101, 5102 and 5108 must be set with the same value.

15. "GENERAL FUNCTIONS" PARAMETERS

The following functions allow activating one or more outputs called QX when these are declared as K21 and K22 (refer to the settings in the Configuration section). These K21 and K22 outputs can be set to provide an image for:

- Monitoring when the temperature is exceeded OR
- Monitoring when the temperature is not reached OR
- To monitor a change between two temperature measurements

This function can use the temperatures known by the NAVISTEM B3000 (e.g. Those of sensors B3 and B8, etc.) or the temperatures called "Special temp. 1" and "Special temp. 2". These sensors may be located by the client and declared on inputs BX1 or BX2 and can be used for any purpose. These are not linked to any specific NAVISTEM B3000 function.

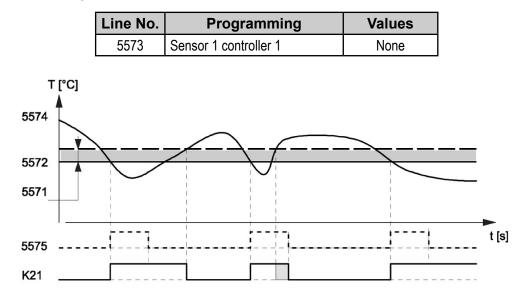

Line	No.	Programming	
Regul 1	Regul 2	Programming	Possible values
5570	5580	Temp diff on dT contr	0 40 °C
5571	5581	Temp diff off dT contr	0 40 °C
5572	5582	On temp min dT contr	-30 120 °C
5573	5583	Sensor 1 controller	None DHW sensor B31 Return sensor B7 Flue gas temp sensor B8 Common flow sensor
5574	5584	Sensor 2 controller	B10 Cascade return sensor B70 Swimming pool sensor B13 Boiler sensor B2 DHW sensor B3 Outside sensor B9 Room sensor B5 Room sensor B52 Room sensor B53 Flow sensor HC1 B1 Flow sensor HC2 B12 Flow sensor HC3 B14 Special temp sensor 1 Special temp sensor 2
5575	5585	On time min dT contr	0 250 s

Temperature excess

This function enables a freely-selected temperature value to be compared with an adjustable limit value.

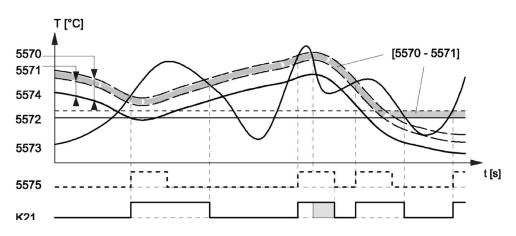
The relay switches if the limit value is exceeded.

Example for regulator 1:


Insufficient temperature

ACV

This function enables a freely-selected temperature value to be compared with an adjustable limit value.


The relay switches if the limit value falls below it.

Example for regulator 1:

Temperature difference regulator

This function enables 2 temperature values that may be freely selected to be compared to each other. An absolute minimum is monitored at the same time.

Assignment or not of the pump/valve kick-start for the K21 and K22 outputs (see parameter 6127):

Line No.		Programming	Possible values
Regul 1	Regul 2	Frogramming	POSSIBle values
5577	5587	Pump/valve kick K2x	Off On

16. "CONFIGURATION" PARAMETERS

The boiler controller must be suitably configured to adapt to the heating system needs.

It has 3 configurable relay outputs (QX1, QX2 and QX3), 2 configurable sensor inputs (BX2 and BX3), a 0...10 V or On/Off input (H1) and a second On/Off input (H5, dry contact).

In its factory configuration, output QX1 is configured as an alarm output. The QX2 pump is configured as DHW Q3 pump. Output QX3 is configured as boiler pump Q1. QX3 and the other inputs/outputs must be configured according to needs.

Boiler controller inputs/outputs	Factory configuration	Possible configuration example
QX1	Alarm transfer K10	
QX2	DHW pump Q3	Consumer circuit pump Q15, or direct circuit pump.
QX3	Boiler pump, or shut-off valve Q1	
BX2	-	Cascade flow sensor B10.
BX3	-	Cascade return sensor B70.
H1	-	Request, consumer circuit 1 or 2 (10V), or request, consumer circuit 1 or 2 (On/Off).
H5	-	Generator blocked waiting

Be sure to correctly configure the boiler controller inputs/outputs to adapt to the heating system.

You can check that the boiler controller is properly configured by checking the hydraulic diagram which the boiler controller has detected.

EXTENSION MODULES

The extension modules bring additional inputs / outputs to the boiler controller.

These must be configured (no voltage) mechanically (jumper) to define the module number (from 1 to 3) and by software (MMI) to define the functionality ensured.

These can be either self-configured in accordance with 6 predefined functions (heating circuit 1, heating circuit 2, heating circuit 3, return temperature regulation, solar DHW, pre-regulation) or each input / output of an extension module can be defined for a specific function.

16.1. Hydraulic configuration

16.1.1. Heating and cooling circuits.

	Line No.			Programming	Possible values
	HC1	HC2	HC3	Frogramming	rossible values
ſ	5710	5715	5721	Heating circuit 1, 2, 3	Off On

The heating circuits can be activated and deactivated by this setting.

16.1.2. DHW tank

Line No.	Programming	Possible values
5730	DHW sensor	DHW sensor B3 Thermostat
		DHW outlet sensor B38

This parameter is used to specify the sensor connected to input B3/B38.

DHW Sensor B3

There is a DHW sensor. The regulator calculates the switching points with the corresponding differential using the DHW setpoint and the temperature measured in the DHW tank.

Thermostat

Regulation of the DHW temperature is based on the switching state of a thermostat connected to the DHW sensor B3.

DHW outlet sensor B38

There is a sensor on the instantaneous hot water outlet. The regulator calculates the switching points with the corresponding differential using the water heating setpoint and the DHW temperature measured at the outlet.

Line No.	Programming	Possible values
5731	DHW controlling element	No charging request Charging
		pump Diverting valve

The DHW load can be carried out with the charging pump or the directional valve and the heat generator pump.

The DHW priority and discharge protection functions are only possible with the charging pump.

When a heating system heat request is detected, the valve always returns to the Heating position. If there is no room heating request (summer operation, ECO functions, vacation), you can specify if the valve in the DHW position must wait for the next DHW load or also return to the heating position.

None

No DHW load with DHW adjustment component Q3 / water heater adjustment component Q34.

Charging pump

The DHW is loaded with a pump.

Directional valve

The DHW is loaded with a bypass valve.

Line No.	Programming	Possible values
5732	Pump off change div valve	0 10 s

Pump deactivation time. You can set the time during which the pump is stopped while the directional valve inverts its operating mode.

In systems with a bypass valve, the pumps can be stopped on transition from heating mode to DHW mode and vice-versa. The deactivation time of the heating circuit circulators can be configured. Deactivation of these pumps can be simultaneous with startup of the directional valve or following a time delay. The number of heating circulators concerned by the cutout depends on the hydraulic system.

There is no intervention on the modulation or control of the burners.

Line No.	Programming	Possible values
5733	Delay pump off	0 10 s

Duration of pump deactivation time delay. The duration of the pump deactivation time delay can be adjusted while the directional valve inverts its operating mode.

Line No.	Programming	Possible values
5734	Basic position DHW div valve	Last request Heating circuit
		DHW

The bypass valve adopts, by default, the position in which it finds itself in the absence of a request.

Last request

The bypass valve stays in its last position on expiry of the last request.

Heating circuit

The bypass valve (UV) goes to the heating position after the last request.

DHW

The bypass valve (UV) goes to the DHW position after the last request.

ACV NAVISTEM B3000, Installation, Use and Maintenance Instructions

16.1.3. Separation

In installations with several boilers, a boiler can be used to load the DHW. This boiler is hydraulically uncoupled from the system and, once the charging operation is completed, indicates that it can re-join the cascade.

For DHW separation, the DHW adjustment component Q3 must be set for *bypass valve*.

Line No.	Programming	Possible values
5737	Optg action DHW div valve	Position on DHW Position on
		heating circuit

Here, the position of the bypass valve is set when the output is active.

Position on DHW

When the output is active, the bypass valve is in the DHW position.

Position on Heating circuit

When the output is active, the bypass valve is in the heating circuit position.

Line No.	Programming	Possible values
5738	Midposition DHW div valve	Off On

Here, the bypass valve can be placed in the middle position to fill or drain the two heating circuits. You must then return the valve manually.

Off

The directional value is brought to the position currently needed in accordance with the heat request and its default position.

On

The bypass valve is brought to the middle position.

16.1.4. Boiler

Line No.	Programming	Possible values
5774	Ctrl boiler pump/DHW valve	All requests Request HC1/
		DHW only

For specific hydraulic installations, this parameter is used to specify that the boiler pump Q1 and the directional valve Q3 are only assigned to the DHW and to heating circuit 1, excluding the other circuits 2 and 3 and external consumer circuits.

All requests

The bypass valve is integrated in the hydraulic circuit for all the requests and alternates between the DHW mode and the other requests. The boiler pump is activated for all the requests.

Only request HC1/DHW

The bypass valve is only integrated in the hydraulic circuit for heating circuit 1 and the DHW, and alternates between the DHW function and heating circuit 1. All of the other requests are not hydraulically connected to the bypass valve and the boiler pump ; they are transmitted directly to the boiler.

16.1.5. Solar

Line No.	Programming	Possible values
5840	Solar controlling element	Charging pump Diverting valve
5841	External solar exchanger	Jointly DHW storage tank Buffer storage tank

In place of a manifold pump and bypass valves for the storage tanks, the solar installation can be operated with charging pumps.

By charging pump

With charging pumps, all the exchangers can be used at the same time. Parallel or alternating operation is possible.

Directional valve

A bypass valve only allows flow in a single exchanger. Only alternating operation is possible.

For the solar circuits with two storage tanks, it is necessary to configure the external exchanger as available and use both as DHW and storage tank, or only one of these two functions.

16.1.6. Storage tank

Line No.	Programming	Possible values
5870	Combi storage tank	No Yes

This setting activates the functions specific to the combined storage tanks. It is thus possible to use the electrical resistor of the tank both for heating and for the DHW.

16.2. Configuration of boiler controller inputs / outputs

16.2.1. Output, relay QX

Line number disconnect		onnect	Drogramming	Dessible values
HC1	HC2	HC3	Programming	Possible values
5890	5891	5892	Relay output QX1, 2, 3	without ppe circuit consum. 1 Q15 boiler pump Q1 alarm output K10 CC3 Q20 pump ppe circuit consum. 2 Q18 Q25 waterfall pump pump CC1 Q2 CC2 Q6 pump DHW pump/ valve Q3 K36 status message Destratative ppe. DHW Q35 dT1 regulator K21 dT2 regulator K22

The output settings associate the corresponding functions in accordance with the selection.

By default, relay QX1 is configured for fault transfer.

None

No function on the output by relay.

Consumer circuit pump 1 Q15

The consumer circuit pump VK1 can be used for an additional consumer. In association with an external heat request at input H with the *Consumer circuit request configuration*. *1*, the application can be used, for example, for a heater battery or similar.

Boiler pump Q1

The connected pump serves to circulate the boiler water.

Output, alarm relay K10

If a fault occurs, it is indicated by the alarm relay. Closure of the contact is time-delayed by 2 minutes. When the error is eliminated, meaning that the error message is no longer present, the contact immediately opens.

Rq: If the fault cannot be eliminated for the moment, the relay can be reinitialised nonetheless. This is performed in the Faults page .

Pump HC3 Q20

The heating circuit with pump HC3 is activated.

Consumer circuit pump 2 Q18

The consumer circuit pump VK2 can be used for an additional consumer. In association with an external heat request at input H with the *Consumer circuit request configuration*. *2*, the application can be used, for example, for a heater battery or similar.

Cascade pump Q25

Boiler pump common to all boilers of a cascade

Pump HC1 Q2

Heating circuit with pump HC1 activated.

Pump HC2 Q6

Heating circuit with pump HC2 activated.

DHW pump/valve Q3

Adjustment component for DHW tank

Status message K36

The output is activated when the burner is operating (flame detected).

DHW Mixing pump Q35

A separate pump for continuously circulating water in the hot water tank when the antilegionella function is on.

Dt controller 1 K21 / Dt controller 2 K22

Relays K21 and K22 are used by the temperature change regulator.

16.2.2. Sensor input BX

Line	No.	Programming	Possible values
BX2	BX3	Programming	Possible values
5931	5932	Sensor input BX2, 3	None DHW sensor B31
			Common flow sensor B10
			Cascade return sensor B70
			Special temp sensor 1 Special
			temp sensor 2

The sensor input settings associate the corresponding functions according to the selection.

B10 common outlet sensor

This sensor is used on the boiler alone or on the master cascade in order to correct the boiler setpoint in the event that the flow of consumers can be mitigated by a flow of unheated water.

This case can occur for example with a pressure-breaking bottle.

Special T° probe 1 or 2

They are used to activate a Qx relay output programmed as "dT 1 K21 or dT 2 K22 regulator" according to the settings made in the "General functions" menu.

These sensors do not influence the behavior of the boiler or of the heating or DHW consumers.

NAVISTEM B3000, Installation, Use and Maintenance Instructions

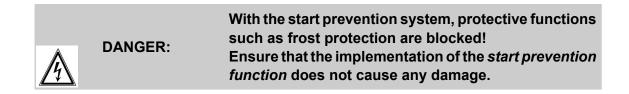
16.2.3. Inputs H1 / H5

Line No. H1	Programming	Possible values
5950	Function input Hx	None Optg mode change HCs+DHW Optg mode changeover HCs Optg mode changeover HC1 Optg mode changeover HC2 Optg mode changeover HC3 Heat generation lock Error/alarm message Consumer request VK1 Consumer request VK2 Excess heat discharge Boiler pressure switch Consumer request VK1 10V DHW thermostat return info fume shutter starting prevention
Line No. H1	Programming	Possible values
5950	Function input Hx	None DC+DHW switching mode DC mode switching CC1 switching mode CC2 mode switching CC3 switching mode generation blocked waiting error / alarm message demand circuit consumed 1 consumer circuit request 2 room thermostat CC1 room thermostat CC2 CC3 room thermostat DHW thermostat return info fume shutter starting prevention boiler pressure switch

DHW thermostat

The DHW tank thermostat is connected here. You also have to adjust in the menu.

Configuration


The DHW sensor (5730) on Thermostat and do not connect anything to input B3.

Smoke shutter info feedback

This feedback signal is required for the *shutter control function smoke* (chapter Smoke damper control).

Starting prevention

This input is used to force the prevention of boiler start-up. Error 193 "Prevention of starting" is generated and recorded in the fault history. The start-up prevention only acts on the local boiler.

Remarque : Dans le cas du Navistem B3100 la tension est de 230Vac

None

No function on input.

Mode switching

- heating circuit

The heating circuit modes are switched on the mode configured on line 900 / 1200 / 1500) by the connection terminals Hx (for example, telephone switch).

- domestic hot water

The DHW load blocking function is only activated with the *setting "heating circuit* +*DHW mode switchover"* or *"DHW mode switchover"*.

Generator blocked achieved

The generator is locked by the connection terminals Hx. All the temperature requests from the heating circuits and DHW are ignored. The boiler frost protection function is ensured during this time.

Error / alarm message

Input H1 generates a regulator error message. If the alarm output is configured accordingly (relay outputs QX1...3, lines 5891...5893), the error is retransmitted or indicated by an additional contact (for example, indicator light or external buzzer).

Consumer circuit request.

The flow setpoint set is activated by the terminals (for example, with a hot battery function of a hot air curtain).

The setpoint must be set on line 1859, 1909, 1959.

Evacuation of surplus heat

The surplus heat evacuation function is used, for example, by an external generator to constrain the consumers (heating circuit, DHW tank, pump Hx) to dissipate their surplus heat by an override signal. The « Evacuate excess heat » parameter is used to specify, for each consumer, acknowledgement of the override signal, and therefore participation in the surplus heat evacuation process.

Local action

With the setting <u>"Device address LPB 0 or >1"</u>, the evacuation function only acts on the local consumers connected to the device.

Central action (LPB)

With the setting <u>"Device address LPB = 1"</u>, the evacuation function also acts on the consumers of the other devices of the same segment. It is not possible to evacuate the surplus heat in the entire system on segments other than segment 0.

Boiler pressure switch

A blocking fault appears when the pressure switch is open. The burner is cut out and the pumps stop. The pressure switch must be closed and the fault cleared to allow the pumps to start and to authorise the burner to operate.

Consumer circuit request. 10V

The external load application node x receives a heat request in the form of a voltage signal (0...10V-). The linear characteristic is defined by two fixed points (voltage value 1 / function value 1 and voltage value 2 / function value 2).

10V pressure measurement

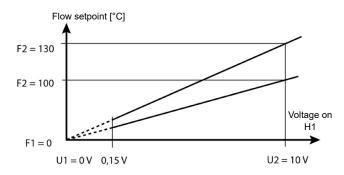
Function internal to boiler

Line No.		Programming	Possible values	
H1	H5	Frogramming	rossible values	
5951	5978	Contact type	NC NO	

NC contact

The contact is normally closed and must be opened to activate the selected function.

NO contact


The contact is normally open and must be closed to activate the selected function.

Parameter Direction of action of contact Hx		State of function / action
NO contact	open	inactive
	closed	active
NC contact	open	active
	closed	inactive

Line No.	Programming	Possible values
5953	Voltage value 1 H1 (U1)	0 10 V
5954	Function value 1 H1 (F1)	-1000 5000
5955	Voltage value 2 H1 (U2)	0 10 V
5956	Function value 2 H1 (F2)	-1000 5000

The linear characteristic is defined by two fixed points. The setting is performed with two parameter binomials for « Function value » and « Voltage value »(F1/U1 and F2/U2).

Example of 10V heat request:

If the input signal goes below the 0.15 V threshold, the heat request is invalidated and therefore not operative.

16.2.4. Outputs 0-10V / PWM P1

Line No.	Programming	Possible values
6085	Choce of function P1	without boiler pump Q1 DHW pump Q3 Intermediate circuit DHW pump Q33 pump CC1 Q2 CC2 Q6 pump CC3 Q20 pump burner modulation

None

No function on the UX output.

Boiler pump Q1

The pump connected is used to circulate the boiler's water.

DHW pump Q3

Setting device for the DHW tank.

DHW interm circ pump Q33

Charge pump for DHW tank with external exchanger.

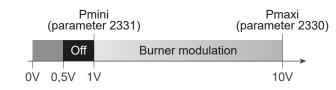
Heat circuit pump HC1 Q2

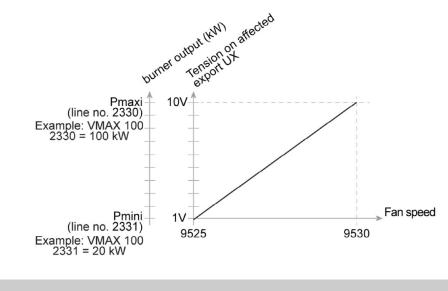
The heating circuit with pump (HC1) is activated.

Heat circuit pump HC2 Q6

The heating circuit with pump (HC2) is activated.

Heat circuit pump HC3 Q20


The heating circuit with pump (HC3) is activated.


Burner modulation

This function is used to send an image of boiler power to a 0-10V output.

00,5 Vcc	The boiler status inhibits starting or locking	
0,51 Vcc	The boiler is waiting to start or waiting for pre- or post- ventilation	
110 Vcc	The boiler is working with its flame lit between the min. and max. power	
	levels	

The burner modulation calculation generated is based on the fan min. and max. OEM speeds (min. setting: parameter 9525 / max. setting: parameter 9530).

When mains power returns after a power break or when a fault is reset, the value that is generated is temporarily undefined.

Line No.	Programming	Possible values
6086	P1 signal logic output	Standard Inverted

16.3. Extension module configuration

Line No.			Programming	Possible values
Mod. 1	Mod. 2	Mod. 3	Frogramming	rossible values
6020	6021	6022	Function extension module 1, 2, 3	None Multifunctional Heat circuit 1 Heat circuit 2 Heat circuit 3 Return temp controller Primary contr/system pump

By assigning a function to the extension module, the inputs / outputs are self-configured.

None

The function is inoperative.

Multifunction

The functions which can be assigned to the multifunction inputs/outputs can be viewed on lines 6030...6038 and 6040...6045.

Heating circuit 1

The settings corresponding to the « Heating circuit 1 » operator page adapt to this application.

Heating circuit 2

The settings corresponding to the « Heating circuit 2 » operator page adapt to this application.

Heating circuit 3

The settings corresponding to the « Heating circuit 3 » operator page adapt to this application.

Return temp. regulator

This function is not used. It results in a configuration error message.

Connections:

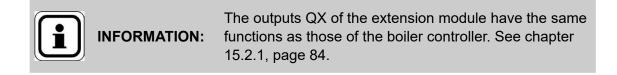
	QX21	QX22	QX23	BX21	BX22	H2
Multifunction	*	*	*	*	*	*
Heating circuit 1	Y1	Y2	Q2	B1	*	*
Heating circuit 2	Y5	Y6	Q6	B12	*	*
Heating circuit 3	Y11	Y12	Q20	B14	*	*

16.3.1. Extension module EX 1 / 2 / 3

		Line No.	_	Programming	Possible values
EX	(1)	EX 2	EX 3	Frogramming	r ussible values
602	24	6026	6028	Funct input EX21 module 1 , 2, 3	None Limit thermostat HC

None

The input has no function


Heating circuit safety thermostat

If the extension module is used for the heating circuit, an external safety thermostat can be connected (for floor heating, for example) to input EX21 (230 V~).

16.3.2. Extension module QX 1 / 2 / 3

	Line No.		Drogramming	Possible values
QX 21	QX 22	QX 23	Programming	POSSIBle values
6030	6031	6032	Relay output module 1	None Cons circuit pump VK1 Q15 Boiler pump Q1 Alarm
6033	6034	6035	Relay output module 2	output K10 Heat circuit pump HC3 Q20 Cons circuit pump VK2 Q18 Cascade pump Q25
6036	6037	6038	Relay output module 3	Heat circuit pump HC1 Q2 Heat circuit pump HC2 Q6 DHW ctrl elem Q3 Status information K36

The output settings associate the corresponding functions in accordance with the selection.

16.3.3. Extension module BX

Line No.		Programming	Possible values	
BX 21	BX 22	Programming	POSSIBle values	
6040	6041	Sensor input module 1	None DHW sensor B31	
6042	6043	Sensor input module 2	Common flow sensor B10	
6044	6045	Sensor input module 3	Cascade return sensor B70	

The sensor input settings associate the corresponding functions according to the selection.

The inputs of sensor BX of the extension module have the same functions as those of the boiler controller. See chapter 15.2.2, page 85.

16.3.4. Extension module H2 1 / 2 / 3

	Line No.			
module 1	module 2	module 3	Programming	Possible values
6046	6054	6062	Function input H2	None Optg mode change HCs+DHW Optg mode changeover HCs Optg mode changeover HC1 Optg mode changeover HC2 Optg mode changeover HC3 Heat generation lock Error/alarm message Consumer request VK1 Consumer request VK2 Excess heat discharge Boiler pressure switch Consumer request VK1 10V Consumer request VK2 10V Pressure measurement 10V
6047	6055	6063	Contact type H2	NC NO
6049	6057	6065	Voltage value 1 H2 (U1)	0 10 V
6050	6058	6066	Function value 1 H2 (F1)	-1000 5000
6051	6059	6067	Voltage value 2 H2 (U2)	0 10 V
6052	6060	6068	Function value 2 H2 (F2)	-1000 5000

Inputs H2 of the extension modules have the same functions as those of the boiler controller. See chapter **15.2.3**, page 86.

Line No.		Programming	Possible values
UX2	UX3	Programming	Possible values
6078	6089	UXx output function	None boiler pump Q1 Burner modulation

16.4. System configuration

16.4.1. Type of sensor / corrections

Line No.	Programming	Possible values
6097	Sensor type collector	NTC Pt 1000

If an extended temperature range is required, a Pt1000 (-28...350 °C) sensor can be used as solar panel sensor B6, rather than sensor CTN (-28...200 °C). The input of multifunction sensor BX (standard device or extension module) to which the sensor B6 is set and connected will therefore be indifferent. The corresponding input automatically uses the appropriate characteristic insofar as it is configured accordingly.

Line No.	Programming	Possible values
6098	Readjustm collector sensor	-20 20 °C
6100	Readjustm outside sensor	-3 3 °C

16.4.2. Building and ambient temperature model

Line No.	Programming	Possible values
6110	Time constant building	0 50 h

The influence of the outdoor temperature on the ambient temperature variations is a function of the accumulative mass of the building (type of construction). This setting is used to act on the reaction speed of the flow setpoint in the event of a fluctuation of the outdoor temperature.

Example :

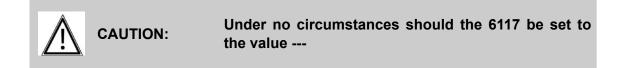
>20 hours

The ambient temperature reacts slowly to the outdoor temperature fluctuations.

10...20 hours

This setting can be used for most buildings.

<10 hours


The ambient temperature reacts quickly to the outdoor temperature fluctuations.

16.4.3. Setpoint control

Line No.	Programming	Possible values
6116	Const tmps compens consig.	0 14 min
6117	Compens centr T° consigne	1 100 °C

The setpoint control function adapts the setpoint of the heat generator.

If the temperature measured at B10 is far from the line flow setpoint, the setpoint of the generators is increased. This increase can be filtered with parameter 6116 and limited by parameter 6117.

16.4.4. Frost protection

Line No.	Programming	Possible values
6120	Frost protection plant	Off On

Depending on the current outdoor temperature, the regulator will trigger all the enabled pumps of the installation and prevent local freezing of the heating installation. The boilers are not put into service according to the outside temperature, but on their flow temperature.

Outside temperature	Boiler pump	
4 °C	Always on	Start
-51.5 °C	Activation approximately every 6 hours for 10 minutes	Cycle
1,5 °C	Constantly on the lookout	STOP

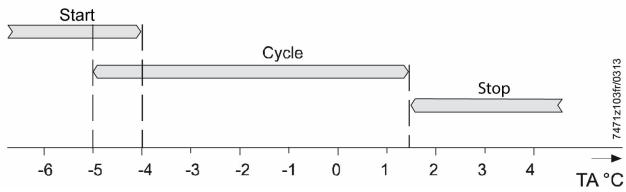


figure 2 - Frost protection - Installation frost protection - Boiler pump

16.4.5. Pump / valve degumming

Line No.	Programming	Possible values
6127	Pump/valve kick duration	0 51 s

The pumps and valves are periodically activated to protect against seizure. Activation of the pumps results in circulation of water in the installation. The pump mechanical parts and the valve seat are rinsed and cleaned of suspended particles to prevent gumming

The pumps directly connected to the standard device are activated every Friday at 10:00 hours throughout the duration of the degumming process set with an interval of 1 minute.

Degumming is only activated when there is no heat request in progress.

Degumming of the valve only takes place provided the valve has not been actuated by a regulator function since the last degumming operation.

Degumming of the pump only takes place provided the pump has not been actuated by a regulator function since the last degumming operation.

16.4.6. Register sensor

If faulty sensors are detected after installation, and to prevent them from being integrated in a correct state (which could happen in the event of automatic detection), there is a Commissioning status function.

This function learns to recognise the sensors connected and generates, in the event of a fault, an error message while inhibiting any change of installation diagram.

Line No.	Programming	Possible values
6200	Save sensors	No Yes

At midnight, the standard device registers the states at the sensor terminals provided the regulator has been operating for at least 2 hours. If a sensor breaks down after registration, the standard device generates an error message. This setting is used to immediately register the sensors. This may be necessary, for example, when a sensor is removed and is no longer useful.

Line No.	Programming	Possible values
6205	Reset to default parameter	No Yes

All the parameters can be reset to the factory settings, except the following pages :

- Date and time
- User interface
- Radio and all time schedule programs
- · and the manual mode setpoint

16.5. Information

16.5.1. Installation diagram

The installation diagram can be validated by parameters 6230, 6231 and 6234.

Line No.	Programming	Possible values
6230	Info 1 OEM	See boiler manual
6231	Info 2 OEM	See boiler manual
6234	Boiler type	1 : VARMAX
		2 : VARFREE
		3 : CONDENSINOX
		4 : VARMAX B
		5 : CONDENSINOX B
		6 : VARPRIM
		7 : VARBLOK
		8 : VARBOX
		9 : VARFREE EVO
		10 SANIGAZ EVO

16.5.2. Device Features

Line	No.	Programming	Possible values
622	0	Software version	

This information indicates the current version of the standard device.

16.5.3. "OPENTHERM" parameters

Navistem B3100 supports OpenTherm Specification 4.0

Line No.	Programming	Possible values
6351	Channel x OT function	External room controller 1
		External room controller 2
		External room controller 3
		Input Hx

External room controller 1

OT communication is activated and assigned to heating circuit 1. The room controller for heating circuit 1 (parameter (6355)) must be set to "external".

External room controller 2

OT communication is activated and assigned to heating circuit 2. The room controller for heating circuit 1 (parameter (6356)) must be set to "external".

External room controller 3

OT communication is activated and assigned to heating circuit 3. The room controller for heating circuit 1 (parameter (6357)) must be set to "external".

ACV NAVISTEM B3000, Installation, Use and Maintenance Instructions

	Line No.			Programming	Possible values
	HC1	HC2	HC3	Programming	POSSIBle values
Γ	6355	6356	6357	HCx room controller	Off On
					Internal
					External

Internal

The heating circuit is operated as the default heating circuit, according to the configuration of the Navistem B3100.

External

The internal heating circuit of the Navistem B3100 is deactivated, but control of the adjustment devices remains active. This means that all Navistem B3100 internal functions related to heat demand calculation are no longer active (heating curve, room influence, room controller, daily heating limit, summer switching, time program, operating mode button, accelerated temperature reduction, accelerated heating, room frost protection, room thermostat, room temperature limit) and that they must be executed by the external controller. The internal functions of the Navistem B3100 are however calculated internally, including the status information, and they can have an influence on the other functions in the event of a summer heating limit, hence the importance of paying attention to an appropriate setting. Central summer switching via the BSB bus has no effect on the external room controllers, but does have an effect on all the other functions of the heating circuit which use this information. The functions of pump control, regulation by mixing valve, protection against overheating, delayed stoppage of pumps, mixing valve discharge, frost protection of the flow circuit, minimum flow temperature, maximum flow temperature, integration of the storage tank storage, primary circuit integration, start-up load shedding, DHW priority, drying function, forced draft, can be configured as for an internal heating circuit. The process values required for this must then be provided by the external controller (e.g. room temperature setpoint).

Note: If a heating circuit is controlled by OT, the "AUTO" operating mode will be displayed for this heating circuit. The operating mode button is blocked for this heating circuit. Pressing the operating mode button causes the message "Operating mode button blocked" to appear.

Line No.	Programming	Possible values
6359	DHW external control	Without
		External room controller 1
		External room controller 2

Without

"Domestic hot water" use by selecting the operating mode via the DHW button on the HMI.

External room controller 1

"Domestic hot water" use by an external controller on channel 1 OpenTherm.

External room controller 2

"Domestic hot water" use by an external controller on channel 2 OpenTherm.

Parameter (6359) is used to release the use of the domestic hot water operating mode (DHW button located at the top left of the HMI) by means of an OpenTherm room controller. OpenTherm 1 and OpenTherm 2 interfaces, if present, are permanently assigned to external room controllers 1 and 2, respectively. If the domestic hot water is controlled by OT, no operation mode will be displayed. The operating mode key is blocked. Pressing the operating mode key causes the indication "Operating mode key blocked" to appear.

17. "LPB SYSTEM" PARAMETERS

To communicate with the other regulators, the OCI 345 enables use of the LPB bus. This accessory is screwed onto the boiler controller platform.

The LPB bus is used either to allow the boiler to receive heat requests from other regulators having the same bus, or to create boiler cascades (cascade can be configured to optimise operation).

17.1. LPB address

Line No.	Programming	Possible values
6600	Device address	0 16
6601	Segment address	0 14

The device address identifies each address on the bus somewhat like a postal address Each device must have a correct address to ensure communication. **Favour segment 0** for the generators.

17.2. Bus supply function

Line No.	Programming	Possible values
6604	Bus power supply function	Off Automatically

The bus power supply is a direct system supply from the regulators (no central power supply). The type of bus supply provided by the regulators is adjustable.

Off

The regulator does not supply the bus with voltage.

Automatic

The electrical power supply of the bus by the regulators is automatically switched on/off on request by the bus.

17.3. Bus power supply status

Line No.	Programming	Possible values
6605	Bus power supply state	Off On

The display indicates if the regulator is currently supplying the bus.

Off

Supply of the bus by the regulators is currently cut off.

On

Supply of the bus by the regulators is currently active ; the regulator is supplying current to the bus.

NAVISTEM B3000, Installation, Use and Maintenance Instructions

17.4. System messages

Line No.	Programming	Possible values
6610	Display system messages	no yes

This setting disables the display of the system messages sent on the LPB bus on the connected control device.

No

Error messages are not displayed on the operating interface of the regulator.

Yes

Error messages are displayed on the operating interface of the regulator.

Line No.	Programming	Possible values
6611	Syst messages alarm relay	no yes

If a system error is reported on the bus, the alarm relay K10 may be triggered. This depends on the settings of these line numbers.

No

The transmitted system error does not trigger the K10 alarm relay.

Yes

The transmitted system error triggers the K10 alarm relay.

Line no.	Programming	Possible values
6612	Alarm elay	0 60 min

Timeout between when the fault appears and when the output set as the "K10 alarm output" is triggered.

This time also acts when sending the fault condition for a slave boiler to the master boiler.

17.5. Centralised functions

These settings only concern the device with address

Centralised « Summer » switching (LPB)

The standard device with address 1 can centralise the summer mode switching for the LPB compatible devices.

To do so, it distributes its own summer/winter heating limit status for heating circuit 1 to the other devices on the bus and forces their heating circuits to Eco mode provided they are not in Comfort mode.

Only transition to the summer mode is concerned by override of the centralised switching function. If the standard master device goes back to winter mode, the other devices return to their local state, whatever it may have been, for example, before the summer mode was controlled.

The centralised function is controlled by two parameters of the standard device :

Winter/summer switchover parameter:

- local:
 - The summer heating limit is not shared
- centralised:

The summer heating limit is transmitted to all the heating circuits in accordance with the perimeter defined.

The action perimeter in the bus depends on the segment address and on the parameter *« Switching action perimeter »:*

- Segment address = 0 and perimeter = Segment:

The summer switching function only acts on the standard devices in their own segment 0.

- Segment address = 0 et perimeter = System:

The summer switching function acts on the standard devices in all the segments (0...14).

- Segment address > 0:

The parameter is not applicable The summer switching function always acts only on the standard devices in their own segment.

The « action perimeter » parameter of the switching functions also acts in sharing of the other centralised switching functions, such as the Mode switching function.

Centralised switching of mode by LPB.

The standard device with address 1 can centralise mode switching for the LPB compatible devices. The switching functions on the central standard device (by input Hx) then also act on the heating circuits and on the DHW of the other devices on the bus.

Line No.	Programming	Possible values
6620	Action changeover functions	Segment System

The range of the centralised switching functions can be defined.

This concerns :

Mode switching input H (provided line 6623 is set for « Centralised »") « Summer » switching (by setting « Centralised » on line 6621)

Inputs to be implemented:

Segment

The switching function applies to all the regulators of a same segment.

System

the switching function applies to all the regulators of the system (all segments included). The regulator must be in segment 0.

Line No.	Programming	Possible values
6621	Summer changeover	Locally Centrally

The regulator can only apply the summer switching function to the local heating circuits, or, by LPB, to another regulator of the same segment or system.

The « summer » switching perimeter is as follows :

Local setting

local action; the local circuit is activated and deactivated in accordance with the settings on lines 730, 1030, 1330.

Centralised setting

Centralised action ; Depending on the parameter set on the « Switching perimeter » line, either the heating circuits of the segment or those of the whole system (line 730) will be activated or deactivated.

Line No.	Programming	Possible values
6623	Optg mode changeover	Locally Centrally

The standard device with address 1 can centralise mode switching for the LPB compatible devices.

The switching functions on the central standard device (by H1 / H2 or the heating circuit mode switching parameter) then also act on the heating circuits and on the DHW of the other devices on the bus

The effect of a centralised mode switching function depends on the device used :

For the devices **executing 1**, the heating circuits switch to *frost protection mode*.

For the devices **executing 2**, the heating circuits switch either to *frost protection mode* or *to reduced operation mode*. The mode can be determined for each circuit (parameter *"Mode switching* of heating circuit 1 = 900, HC 2 = 1200, heating circuit P = 1500").

While the centralised mode switching function is active, local mode selection is inhibited on all the devices.

The effect of mode switching by input H is as follows :

Local setting

Local action ; The local heating circuit is activated/deactivated

Centralised setting

Central action ; Depending on the parameter set on the « Switching perimeter » line, either the heating circuits of the segment or those of the entire system will be activated/ deactivated.

Line No.	Programming	Possible values
6624	Manual source lock	Locally Segment

The action perimeter of the boiler locking function by input H is as follows in this case :

Local setting

Local action The local generator is locked.

"Segment "input"

Central action: All the cascade generators are locked.

Line No.	Programming	Possible values
6625	DHW assignment	Local HCs All HCs in segment
		All HCs in system

The DHW should only be assigned provided DHW production is only controlled by the heating time schedule program (see lines 1620 or 5061).

Local heating circuits

DHW production only takes place for the local heating circuit.

All the heating circuits of the segment

DHW production takes place for all the heating circuits of the segment.

All the heating circuits in the system

DHW production takes place for all the heating circuits of the system.

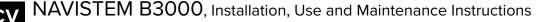
Whatever the setting, the regulators in « vacation » mode are also taken into account for DHW production.

Line No.	Programming	Possible values
6631	Ext source in Eco mode	Off On DHW On

The energy savings mode can be selected in the "Special mode/Service" menu at command line 7139.

The external boilers connected to the local bus operate as follows in eco mode :

Off


Remains locked .

DHW on

Released for DHW charging.

On

Continuously released.

17.6. Clock

Line No.	Programming	Possible values
6640	Clock mode	Autonomously Slave without remote setting Slave with remote setting Master

This setting defines the action of the system time on the time set in the regulator.

Independent

The time can be set on the regulator. The regulator time is not synchronised on the system time.

Slave without adjustment

The time cannot be set on the regulator. The regulator time is continuously automatically synchronised on the system time.

Slave with adjustment

The time can be set on the regulator. It is simultaneously used as system time by the master. The regulator time is however automatically and continuously adapted to the system time.

Master

The time can be set on the regulator. The regulator time becomes the reference time for the system. The system time is synchronised.

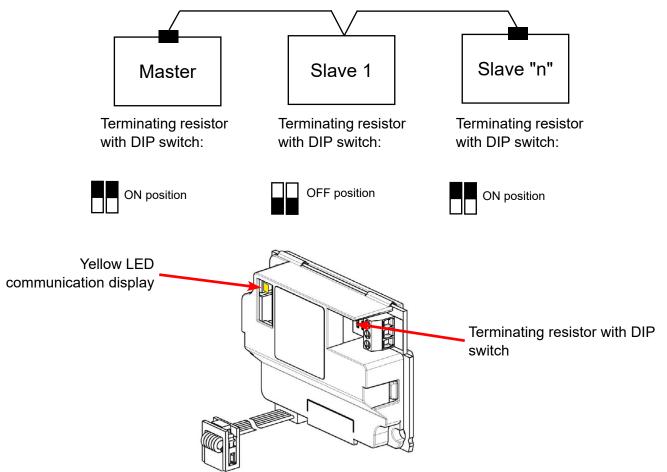
17.7. Outdoor temperature

Line No.	Programming	Possible values
6650	Outside temp source	0 239

In the installation with LPB local bus, a single outdoor sensor only will suffice. It is connected to any regulator and supplies the temperature to the regulators which do not have an outdoor sensor. The screen first indicates the segment number, then the address of the device.

- --.-- Address of outdoor sensor cannot be read
- 01.02 Address of outdoor temperature sensor The first number corresponds to the segment number (01.) The second number corresponds to the device address (.02)

If necessary (for example, if a building has different solar exposure areas), several areas of the system can be equipped with a separate outdoor sensor.



17.8. "MODBUS" parameters

The Navistem B3100 is Modbus compatible with the OCI351 Modbus kit. On the bus the Navistem B3100 is always declared as a slave.

Dialog function code that can be used:

- 0x03 Read registers
- 0x06 Write to single register (not suitable for structured data types)
- 0x10 Write to multiple registers

Response delay to be taken into account by the bus master: 300ms Maximum length: 1000 m with 9600 baud speed and a cable section 0.13 mm²

L	ine No.	Programming	Possible values
	6650	Outdoor T° source	1 239

Dans l'installation avec bus local LPB une seule sonde extérieure suffit. Elle se raccorde à un régulateur quelconque et fournit la température aux régulateurs sans sonde extérieure. L'écran affiche d'abord le numéro de segment, puis l'adresse de l'appareil.

Lin	ne No.	Programming	Possible values
6	651	Slave address	1 à 247 or

Modbus inactive

NAVISTEM B3000, Installation, Use and Maintenance Instructions

Line No.	Programming	Possible values
6652	Baud rate	1200
		2400
		4800
		9600
		19200

Remark:

The following rule of thumb applies: doubling the transmission speed reduces the communication distance by half.

Line No.	Programming	Possible values
6653	Parity	Even Odd None

La parité sert à détecter les erreurs de transmission des octets de données.

Line No.	Programming	Possible values
6654	Stop bit	1

Remark:

If 2 stop bits are configured, parity must be configured to *None*.

18. "ERROR" PARAMETERS

When a fault occurs, an error message can be read using the Info key. The display indicates the cause of the fault.

The boiler controller saves the last 20 faults. The system stores the fault code, the time and the operating phase during which the fault has occurred.

18.1. Information message

A fault present in the system appears on the display with the Albatros code for which the error has occurred.

Line No.	Programming	Possible values
6705	SW diagnostic code	0 65535

A fault present in the system is displayed here with the internal software diagnostic code for which the error has occurred.

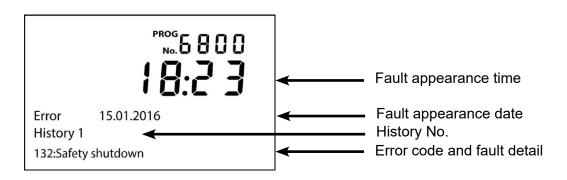
Line No.	Programming	Possible values
6706	Burn ctrl phase lockout pos	0 255

A fault present in the system is displayed with the disturbance phase in which the error has occurred.

18.2. Fault indication function

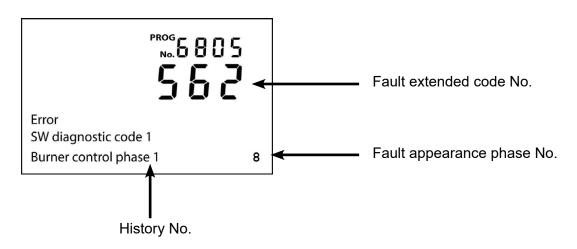
Line No.	Programming	Possible values
6743	Boiler temp alarm	10 240 min

This function monitors the boiler temperature when the burner is active and generates an alarm message in the event of a fault.


18.3. History

Line No.	Programming	Possible values
6800, 6810, 6820, 6830, 6840,	History	00:00 23:59 h:m
6850, 6860, 6870, 6880, 6890,		
6900, 6910, 6920, 6930, 6940,		
6950, 6960, 6970, 6990		

The unit registers the last 20 faults which have occurred in a non-volatile memory. Every new input deletes the oldest input from the memory. For each error input, the system registers the code, the time, the internal software diagnostic code and the disturbance phase of the safety unit.



Example:

Line No.	Programming	Possible values
6805, 6815, 6825, 6835, 6845,	Software diagnostic code	0 9999
6855, 6865, 6875, 6885, 6895,		
6905, 6915, 6925, 6935, 6945,		
6955, 6965, 6975, 6995		

Example:

19. "MAINTENANCE / SPECIAL MODE" PARAMETERS

19.1. Maintenance function

Line No.	Programming	Possible values
7040	Burner hours interval	100 10000 h

A maintenance message is displayed as soon as the interval set for the burner operating hours has elapsed.

Line No.	Programming	Possible values
7041	Burn hrs since maintenance	0 10000 h

Totalisation and display of current value. The value can be reset to 0 on this line.

Line No.	Programming	Possible values
7042	Burner start interval	100 65500

A maintenance message is displayed as soon as the interval set for the burner startups has elapsed.

Line No.	Programming	Possible values
7043	Burn starts since maint	0 65535

Totalisation and display of current value. The value can be reset to 0 on this line.

Line No.	Programming	Possible values
7044	Maintenance interval	1 240 months

A maintenance message is displayed when the interval set for operating time has elapsed. The burner can be turned on or off.

Line No.	Programming	Possible values
7045	Time since maintenance	1 240 months

Totalisation and display of current value. The value can be reset to 0 on this line.

Line No.	Programming	Possible values
7050	Fan speed ionization current	0 10000 rpm

Speed limits starting from which the burner ionisation current maintenance alarm must be generated when the ionisation current monitoring function controls an increase in speed due to an ionisation current which is too low.

Line No.	Programming	Possible values
7051	Message ionization current	No Yes

Display and reinitialisation indicator for burner ionisation current maintenance alarm for boiler controller. The maintenance alarm can only be reset provided the triggering event has been eliminated.

NAVISTEM B3000, Installation, Use and Maintenance Instructions

19.2. Cleaning

Line No.	Programming	Possible values
7130	Chimney sweep function	Off On
7131	Burner output	Partial load Full load Max heating load

The burner is activated. For the burner to operate as long as possible, the only active cutout point is the maximum temperature limitation of the boiler.

The burner power can be adjusted during the cleaning function:

Partial load:

Cleaning function with minimum boiler power.

Full load:

Cleaning function with maximum boiler power.

Maximum heating load:

Cleaning function with maximum heat power configured.

This function is deactivated by setting -.- on this line or automatically when the maximum boiler temperature is reached.

19.3. Maintenance function

Line No.	Programming	Possible values
7140	Manual control	Off On

If the manual mode is active, the relay outputs are no longer controlled according to the regulation state, but are adjusted, according to their function, on a predefined state of the manual mode.

The relay outputs are switched on a state which will produce heat in accordance with their hydraulic function.

Adjustment of manual mode setpoint:

When the manual mode is activated, you must go into the main display. This is where the maintenance/special mode symbol is displayed.

By pressing on the Info key, the "Manual mode" information is displayed in which the setpoint can be defined.

If the cleaning function is activated in manual mode, the latter is interrupted to allow the function to run. The manual mode stays active so long as it is selected.

This function is not monitored as a function of time. The manual mode selection remains active even after a restart.

Line No.	Programming	Possible values
7143	Controller stop function	Off On

If stopping of the regulator is activated, the boiler is directly controlled to the burner power set in the regulator stopping setpoint.

Line No.	Programming	Possible values
7145	Controller stop setpoint	0 100 %

When a regulator stopping function is active, the boiler is set to the power entered here.

Line No.	Programming	Possible values
7146	Deaeration function	Off On

Parameter defining manual triggering of function by control key for example, or by maintenance/special mode menu. At the end of the purge operation, the parameter is reset to *Off*. It can also be set to *Off* to interrupt the purge operation at any time.

Line No.	Programming	Possible values
7147	Type of venting	None Heating circuit
		continuous Heating circuit
		cycled DHW continuous DHW
		cycled

This parameter is used to preselect the purge phases; also refer to the previous section, *Purge function*.

If the function is initiated, this value indicates the current phase for information.

None

Operates as parameter: By default, i.e. the purge function is active throughout phase 1 (continuous heating circuit); Phase 2 (Cyclic heating circuit); Phase 3 (continuous DHW) and Phase 4 (cyclic DHW).

Operates as information value: The function is interrupted.

Continuous heating circuit

Operates as parameter: The purge function is active throughout phase 1 (Continuous heating circuit); Phase 2 (Cyclic heating circuit); Phase 3 (continuous DHW) and Phase 4 (cyclic DHW).

Operates as information value: The function is in phase 1 (Continuous heating circuit).

Cyclic heating circuit

Operates as parameter: The purge function is only active throughout phase 2 (Continuous heating circuit); Phase 3 (continuous DHW) and Phase 4 (cyclic DHW).

Operates as information value: The function is in phase 2 (Cyclic heating circuit).

Continuous DHW

Operates as parameter: The purge function is only active throughout phase 3 (Continuous DHW) and phase 4 (cyclic DHW).

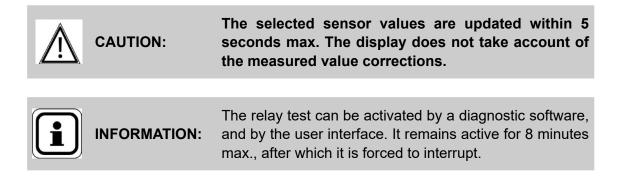
Operates as information value: The function is in phase 3 (Continuous DHW).

Cyclic DHW

Operates as parameter: The purge function is only active throughout phase 4 (cyclic DHW).

Operates as information value: The function is in phase 4 (cyclic DHW).

19.4. Service


Line N	lo.	Programming	Possible values
7170)	Telephone customer service	09

Entry of telephone number which appears in the information display

20. "INPUT / OUTPUT TEST" PARAMETERS

The input/output test is used to check correct operation of the connected components.

20.1. Relay output test

Line No.	Programming	Possible values
7700	Relay test	No test Everything off Relay
		output QX1 Relay output QX2
		Relay output QX3 Relay
		output QX4 Relay output QX21
		module 1 Relay output QX22
		module 1 Relay output QX23
		module 1 Relay output QX21
		module 2 Relay output QX22
		module 2 Relay output QX23
		module 2 Relay output QX21
		module 3 Relay output QX22
		module 3 Relay output QX23
		module 3

The relay test is used to trigger and stop all of the relay outputs (burner, pumps, etc.) independently of the regulator state This is used to quickly check the wiring.

A parameter dedicated to this purpose is used to energise each relay individually. The set state remains active on exit from this parameter.

The test can be interrupted explicitly, otherwise it is automatically deactivated after 1 hour.

No test

The output test is deactivated

Everything is OFF

All the outputs are deactivated.

Relay output QX...

Only QX... is activated.

Relay output QX2... module n

Only QX2... on the extension module n is activated.

The electronic temperature regulator of the boiler has priority with respect to the outputs test. It can therefore override the burner relay output test.

20.2. Sensor inputs test.

Line No.	Programming	Possible values
7730	Outside temp B9	-50 50 °C
7750	DHW temp B3/B38	0 140 °C
7760	Boiler temp B2	0 140 °C
7820	Sensor temp BX1	-28 350 °C
7821	Sensor temp BX2	-28 350 °C
7822	Sensor temp BX3	-28 350 °C
7823	Sensor temp BX4	-28 350 °C
7830	Sensor temp BX21 module 1	-28 350 °C
7831	Sensor temp BX22 module 1	-28 350 °C
7832	Sensor temp BX21 module 2	-28 350 °C
7833	Sensor temp BX22 module 2	-28 350 °C
7834	Sensor temp BX21 module 3	-28 350 °C
7835	Sensor temp BX22 module 3	-28 350 °C

The inputs test is used to read the current measurement values on the input terminals of the units. This is used to quickly check the wiring.

20.3. Test of inputs H1 / H2 / H3 / H4 / H5 / H6 / H7

Line No.	Programming	Possible values
7840	Voltage signal H1	0 10 V
7841	Contact state H1	Open Closed
7845	Voltage signal H2 module 1	0 10 V
7846	Contact state H2 module 1	Open Closed
7848	Voltage signal H2 module 2	0 10 V
7849	Contact state H2 module 2	Open Closed
7851	Voltage signal H2 module 3	0 10 V
7852	Contact state H2 module 3	Open Closed
7854	Voltage signal H3	0 10 V
7855	Contact state H3	Open Closed
7860	Contact state H4	Open Closed
7862	Frequency H4	0 2000
7865	Contact state H5	Open Closed
7872	Contact state H6	Open Closed
7874	Contact state H7	Open Closed

The inputs test is used to read the current measurement values on the input terminals of the units. This is used to quickly check the wiring.

20.4. Test of EX inputs (extension module)

Line No.	Programming	Possible values
7950	Input EX21 module 1	0V 230V
7951	Input EX21 module 2	0V 230V
7952	Input EX21 module 3	0V 230V

The inputs test is used to read the current measurement values on the input terminals of the units. This is used to quickly check the wiring.

21. "STATE" PARAMETERS

The current operating state of the installation is displayed by status displays.

Line No.	Programming
8000	State heating circuit 1
8001	State heating circuit 2
8002	State heating circuit 3

End user (info level)	Commissioning, specialist	State Nbr.
Thermostat response	Thermostat response	3
Manual intervention active	Manual intervention active	4
Drying function activated	Drying function activated	102
	Overheating protection active	56
	Restriction, heating protection	103
	Restriction, DHW priority	104
	Restriction, storage tank	105
Heating mode restriction		106
	Forced drawing, storage tank	107
	Forced drawing, DHW	108
	Forced drawing, boiler	109
Forced drawing	Forced drawing	110
	Time delay on cutout active	17
	Startup + accelerated heating option	111
	Optimisation on activation	112
	Accelerated temperature build-up	113
Comfort heating mode	Comfort heating mode	114
	Optimisation on cutout	115
Reduced heating mode	Reduced heating mode	116
	Frost protection	101
	Frost protection, flow active	117
	Installation frost protection active	23
Frost protection activated		24
Summer operation	Summer operation	118
	Day eco mode active	119
	Lowered, reduced	120
	Lowered, frost protection	121
	Ambient temperature limitation	122
Off	Off	25

Line No.	Programming
8003	State DHW

End user (info level)	Commissioning, specialist	State Nbr.
Thermostat response	Thermostat response	3
Manual intervention active	Manual intervention active	4
Withdrawal mode	Withdrawal mode	199
	Heat holding mode active	222
Heat holding mode EN	Heat holding mode EN	221
	Adiabatic cooling by manifold	77
	Adiabatic cooling by generator / heating circuits	78
Adiabatic cooling active		53
	Discharge protection active	79
	Load duration limitation active	80
	Load locked	81
Load lock active		82
	Override, Maximum tank temperature	83
	Override, Maximum load temperature	84
	Override, anti-legionella setpoint	85
	Override, comfort setpoint	86
Forced load active		67
	Load by electrical resistor, anti-legionella setpoint	87
	Load by electrical resistor, Comfort setpoint Load by electrical resistor, reduced setpoint	88
	Load by electrical resistor, frost protection	
	setpoint	89
	Electrical resistor released	
		90
		91
Load by electrical resistor		66
	Flow active	92
	Accelerated load, anti-legionella	93
Accelerated load active		94
	Load, anti-legionella setpoint	95
	Load, Comfort setpoint	96
	Load, reduced setpoint	97
Load activated		69
Frost protection activated	Frost protection activated	24
	Instantaneous hot water frost protection	223
Time delay on cutout active	Time delay on cutout active	17
Load on standby	Load on standby	201
	Loaded, tank maximum temperature	70
	Loaded, maximum load temperature	71
	Loaded, anti-legionella temperature	98
	Loaded, comfort temperature	99
	Loaded, reduced temperature	100
Loaded		75

ACV NAVISTEM B3000, Installation, Use and Maintenance Instructions

End user (info level)	Commissioning, specialist	State Nbr.
Off	Off	25
Ready	Ready	200

Line No.Programming8005State boiler

End user (info level)	Commissioning, specialist	State Nbr.
STB response	STB response	1
Safety limitation test active	Safety limitation test active	123
fault	fault	2
	Smoke temperature, cutout	232
	Smoke temperature, power limitation	233
Smoke temperature too high		234
Thermostat response	Thermostat response	3
Manual intervention active	Manual intervention active	4
	Cleaning function, nominal load	5
	Cleaning function, partial load	6
Cleaning function active		7
	Manual lock	8
	Locked, solid fuel boiler	172
	Auto lock	9
	Locked, outdoor temperature	176
	Locked, ecological mode	198
Blocked		10
	Minimum limitation	20
	Minimum limitation, partial load	21
Minimum limitation active	Minimum limitation active	22
	Load shed on startup	11
	Load shed on startup, partial load	12
	Re-load limitation	13
	Re-load limitation, partial load	14
In operation		18
Load storage tank	Load storage tank	59
In operation for heating circuit, DHW	In operation for heating circuit, DHW	170
Partial load for heating circuit, DHW	Partial load for heating circuit, DHW	171
Released for heating circuit, DHW	Released for heating circuit, DHW	173
In operation for DHW	In operation for DHW	168
Partial load for DHW	Partial load for DHW	169
Released for DHW	Released for DHW	174
In operation for heating circuit	In operation for heating circuit	166
Partial load for heating circuit	Partial load for heating circuit	167
Released for heating circuit	Released for heating circuit	175
Time delay on cutout active	Time delay on cutout active	17
Released	Released	19
	Installation frost protection active	23
Frost protection activated		24
Off	Off	25

Line No.	Programming
8007	State solar

End user (info level)	Commissioning, specialist	State Nbr.
Manual intervention active	Manual intervention active	4
Fault	Fault	2
Collective frost protection active	Collective frost protection active	52
Adiabatic cooling active	Adiabatic cooling active	53
Tank maximum temperature reached	Tank maximum temperature reached	54
Evaporation protection active	Evaporation protection active	55
Overheating protection active	Overheating protection active	56
Maximum load temperature reached	Maximum load temperature reached	57
Load DHW+tank+pool	Load DHW+tank+pool	151
Load DHW+tank	Load DHW+tank	152
Load DHW+pool	Load DHW+pool	153
Load tank+pool	Load tank+pool	154
Load DHW	Load DHW	58
Load storage tank	Load storage tank	59
Load pool	Load pool	60
	Minimum load temperature not reached	61
	Insufficient differential temperature	62
Insufficient sunshine	Insufficient sunshine	63

Line No.	Programming
8008	State solid fuel boiler

End user (info level)	Commissioning, specialist	State Nbr.
Manual intervention active	Manual intervention active	4
Fault	Fault	2
Overheating protection active	Overheating protection active	56
	Manual lock	8
	Auto lock	9
Blocked		10
	Minimum limitation	20
	Minimum limitation, partial load	21
Minimum limitation active	Minimum limitation active	22

ACV NAVISTEM B3000, Installation, Use and Maintenance Instructions

End user (info level)	Commissioning, specialist	State Nbr.
	Load shed on startup	11
	Load shed on startup, partial load	12
	Return limitation	13
	Return limitation, partial load	14
In operation for heating circuit	In operation for heating circuit	166
Partial load for heating circuit	Partial load for heating circuit	167
In operation for DHW	In operation for DHW	168
Partial load for DHW	Partial load for DHW	169
In operation for heating circuit, DHW	In operation for heating circuit, DHW	170
Partial load for heating circuit, DHW	Partial load for heating circuit, DHW	171
Time delay on cutout active	Time delay on cutout active	17
In operation	In operation	18
Ignition aid activated	Ignition aid activated	163
Released	Released	19
	Installation frost protection active	23
	Boiler frost protection activated	141
Frost protection activated		24
Off	Off	25

Line No.	Programming
8009	State burner

End user (info level)	Commissioning, specialist	State Nbr.
Disturbance position ?	Disturbance position ?	211
Startup inhibit	Startup inhibit	212
In operation	In operation	18
	Safety time	214
	Preventilation	218
Commissioning / Setting into service	Commissioning / Setting into service	215
	Post-ventilation	219
	Shutdown	213
	Return to zero	217
Reduced	Reduced	216

Line No.	Programming
8010	State buffer

End user (info level)	Commissioning, specialist	State Nbr.
Heat	Heat	147
Frost protection activated	Frost protection activated	24

End user (info level)	Commissioning, specialist	State Nbr.
	Electrical load, backup mode	64
	Load by electrical resistor, evaporator protection	65
	Electric load, de-icing	
	Load by electrical resistor, override	131
	Load by electrical resistor, replacement	164
		165
	Load locked	81
	Restriction, DHW priority	104
Restricted load		124
	Forced load active	67
	Partial load active	68
Load activated		69
	Adiabatic cooling by manifold	77
	Adiabatic cooling by DHW / heating circuits	142
Adiabatic cooling active		53
	Loaded, tank maximum temperature	70
	Loaded, maximum load temperature	71
	Loaded, first load at setpoint temperature	72
	Loaded, setpoint temperature	73
	Partially loaded, setpoint temperature	74
	Loaded, minimum load temperature	143
Loaded		75
Cold	Cold	76
No request	No request	51

Line No.	Programming
8011	State swimming pool

End user (info level)	Commissioning, specialist	State Nbr.
Manual intervention active	Manual intervention active	4
Fault	Fault	2
Heating mode restriction	Heating mode restriction	106
Forced drawing	Forced drawing	110
	Generator heating mode	155
Heating mode		137
Heated, maximum pool temperature	Heated, maximum pool temperature	156
	Heated, solar setpoint	158
	Heated, generator setpoint	157
Heated		159
	Heating mode, ART solar	160
	Heating mode, ART generator	161
Heating off		162
Cold	Cold	76

22. "DIAGNOSTICS" PARAMETERS

22.1. Cascade diagnostic

Various setpoints and actual values, relay switching states and generator states can be set for diagnostic purposes.

Line No.	Programming	Possible values
8100, 8102, 8104, 8106, 8108, 8110,	Priority source	0 16
8112, 8114, 8116, 8118, 8120, 8122,		
8124, 8126, 8128, 8130		
8101, 8103, 8105, 8107, 8109, 8111,	State source	Missing Faulty Manual
8113, 8115, 8117, 8119, 8121, 8123,		control active Heat
8125, 8127, 8129, 8131		generation lock active
		Chimney sweep funct active
		Temporarily unavailable
		Outside temp limit active
		Not released Released
8138	Cascade flow temp	0 140 °C
8139	Cascade flow temp setp	0 140 °C
8140	Cascade return temp	0 140 °C
8141	Cascade return temp setp	0 140 °C
8150	Source seq ch'over current	0 990 h

22.2. Generator diagnostic

Various setpoints and actual values, relay switching states and timer states can be set for diagnostic purposes.

Line No.	Programming	Possible values
8304	Boiler pump Q1	Off On
8308	Boiler pump speed	0 100 %
8310	Boiler temp	0 140 °C
8311	Boiler setpoint	0 140 °C
8312	Boiler switching point	0 140 °C
8313	Control sensor	0 140 °C
8314	Boiler return temp	0 140 °C
8315	Boiler return temp set	0 140 °C
8316	Flue gas temp	0 350 °C
8318	Flue gas temp max	0 350 °C
8321	Primary exchanger temp	0 140 °C
8323	Fan speed	0 10000 tr/min
8324	Set point fan	0 10000 tr/min
8325	Current fan control	0 100 %

NAVISTEM B3000, Installation, Use and Maintenance Instructions

Line No.	Programming	Possible values
8326	Burner modulation	0 100 %
8327	Water pressure	0 10
8329	Ionization current	0 100 µA
8330	Hours run 1st stage	00:00:00 2730:15:00 h
8331	Start counter 1st stage	0 2147483647
8338	Hours run heating mode	00:00:00 8333:07:00 h
8339	Hours run DHW	00:00:00 8333:07:00 h
8366	Boiler throughput	0 3276.7 l/min
8378	Overall heating energy	
8379	Overall DHW energy	
8380	Global Energy	
8381	Heating gas energy	
8382	DHW gas energy	
8383	Gas energy	
8390	Current phase number	TNB TLO TNN STY STV THL1 THL1A TV TBRE TW1 TW2 TVZ TSA1 TSA TI MOD THL2 THL2A TN SAV STOE
8499	Collector pump 1	Off On
8501	Solar ctrl elem buffer	Off On
8502	Solar ctrl elem swi pool	Off On
8505	Speed collector pump 1	0 100 %
8506	Speed solar pump ext exch	0 100 %
8507	Speed solar pump buffer	0 100 %
8508	Speed solar pump swi pool	0 100 %
8510	Collector temp 1	-28 350 °C
8511	Collector temp 1 max	-28 350 °C
8512	Collector temp 1 min	-28 350 °C
8513	dt collector 1/DHW	-168 350 °C
8514	dt collector 1/buffer	-168 350 °C
8515	dt collector 1/swimming pool	-168 350 °C
8519	Solar flow temp	-28 350 °C
8520	Solar return temp	-28 350 °C
8526	24-hour yield solar energy	0 999,9 kW/h
8527	Total yield solar energy	0 9999999,9 kW/h
8530	Hours run solar yield	00:00:00 8333:07:00 h
8531	Hours run collect overtemp	00:00:00 8333:07:00 h
8532	Hours run collector pump	00:00:00 8333:07:00 h
8560	Solid fuel boiler temp	0 140 °C
8570	Hours run solid fuel boiler	00:00:00 8333:07:00 h
8742	HC1 Room model temperature	
8772	HC2 Room model temperature	
8802	HC3 Room model temperature	

22.3. Consumer diagnostic

Various setpoints and actual values, relay switching states and timer states can be set for diagnostic purposes.

Line No.	Programming	Possible values
8700	Outside temp	-50 … 50 °C
8701	Outside temp min	-50 … 50 °C
	Resetting of the minimum outside T°	
8702	Outside temp max	-50 … 50 °C
	Resetting of the maximum outside T°	
8703	Outside temp attenuated	-50 … 50 °C
	Réinitialisation de la T° atténuée	
8704	Outside temp composite	-50 … 50 °C
8730, 8760, 8790	Heating circuit pump 1, 2, 3	Off On
8731, 8761, 8791	Heat circ mix valv 1, 2, 3 open	Off On
8732, 8762, 8792	Heat circ mix valv 1, 2, 3 close	Off On
8740, 8770, 8800	Room temp 1, 2, 3	0 50 °C
8741, 8771, 8801	Room setpoint 1, 2, 3	4 35 °C
8743, 8773, 8803	Flow temp 1, 2, 3	0 140 °C
	Flow temp setpoint 1, 2, 3	0 140 °C
8749, 8779, 8809	Room thermostat 1, 2, 3	No demand Demand
8820	DHW pump	Off On
8830	DHW temp 1	0 140 °C
8832	DHW temp 2	0 140 °C
8835	DHW circulation temp	0 140 °C
8836	DHW charging temp	0 140 °C
8852	DHW consumption temp	0 140 °C
8853	Instant WH setpoint	0 140 °C
8875, 8885	Flow temp setp VK1, 2	5 130 °C
8895	Flow temp setp swimming pool	5 130 °C
8900	Swimming pool temp	0 140 °C
8901	Swimming pool setpoint	8 80 °C
8930	Primary controller temp	0 140 °C
8931	Primary controller set	0 140 °C
8950	Common flow temp	0 140 °C
8951	Common flow temp setp	0 140 °C
8952	Common return temp	0 140 °C
8962	Common output setpoint	0 100 %
8980	Buffer temp 1 (B4)	0 140 °C
8981	Buffer setpoint	0 140 °C
8982	Buffer temp 2 (B41)	0 140 °C
8983	Buffer temp 3 (B42)	0 140 °C
9009	Water pressure H3 *	0 10 bar

Line No.	Programming	Possible values
9031, 9032, 9033, 9034	Relay output QX1, 2, 3, 4	Off On
9050, 9053, 9056	Relay output QX21 module 1, 2, 3	Off On
9051, 9054, 9057	Relay output QX22 module 1, 2, 3	Off On
9052, 9055, 9058	Relay output QX23 module 1, 2, 3	Off On

* Boiler pressure

23. "SAFETY UNIT" PARAMETERS

23.1. Operation

Line No.	Programming	Possible values
9500	Pre-ventilation time	051s

Adjustable pre-ventilation duration on the operating interface. This value can only always be greater than the Min pre-ventilation duration (9501).

Line No.	Programming	Possible values
9504	Required speed prepurging	200 10000 tr/min
9505	Req speed prepurging min	200 10000 tr/min

Preventilation speed setpoint may be set on the operating interface. This value may only be higher than the setpoint in parameter 9505.

Line No.	Programming	Possible values
9512	Required speed ignition	200 10000 tr/min
9513	Required speed ignition max	200 10000 tr/min

Ignition speed setpoint may be set on the operating interface. This value may only be higher than the setpoint in parameter 9513.

Line No.	Programming	Possible values
9524	Required speed LF	0 10000 tr/min

Rotation speed setpoint with partial load adjustable on control interface This value can only always be greater than the minimum rotation speed setpoint with partial load

Line No.	Programming	Possible values
9525	Required speed LF min	0 10000 tr/min

Minimum speed setpoint, partial load (safety parameter). Limit for rotation speed setpoint, *partial load*.

Line No.	Programming	Possible values
9529	Required speed HF	0 10000 tr/min

Rotation speed setpoint with nominal load adjustable on control interface This value can only always be greater than the maximum rotation speed setpoint with nominal load .

Line No.	Programming	Possible values
9530	Required speed HF max	0 10000 tr/min

Maximum speed setpoint with nominal load (safety parameter) Limit for rotation speed setpoint with nominal load.

Line No.	Programming	Possible values
9626	Power slope / wind speed	from -1000 to +1000
9627	Section Y power / fan speed	from -1500 to +1500

Energy consumption is approximated using fan speed and a linear approximation of current burner output.

It is possible to configure the linear approximation function for determining the burner output using the additional parameters.

Slope of the right equation Power/fan speed slope (9626) and y-axis section of the right equation Y section power/fan speed (9627).

These counters are visible at parameters, 8381, 8382, 8378, 8379, 8080, 8081, 8082, 8083

Note: The configuration of the DHW priority DHW load parameter (1630) has a direct influence on the detection of the operating mode for which the boiler is currently operating. 100% detection is only ensured if the parameter is configured with the absolute value. For all other configurations, in the event of multiple demand (domestic hot water and heating at the same time), the energy made available is added at a flat rate to the heating gas energy meter (8381).

23.2. Chimney drying function

Line No.	Programming	Possible values
9650	Chimney drying	off temporary continuous

If the chimney drying function is activated, the function starts after a shutdown on transition to reduced mode. The chimney drying function can be interrupted by any heat request, and restarts when the system returns to standby.

Off

The function is inoperative.

Temporary

Duration of chimney drying in accordance with *"Chimney drying duration"* parameter, line (9652).

Continuous

The chimney drying function is continuously executed in standby mode

Line No.	Programming	Possible values
9651	Req speed chimney drying	0 10000 tr/min

Speed at which chimney drying must be executed.

Line No.	Programming	Possible values
9652	Duration chimney drying	10 1440 min

Duration of chimney drying when execution must be limited in time.

69780 TOUSSIEU Tél. : 04 72 47 07 76 Fax : 04 72 47 08 72 www.acv.com

